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Abstract
Error-bounded lossy compression is critical to the success of
extreme-scale scientific research because of ever-increasing
volumes of data produced by today’s high-performance com-
puting (HPC) applications. Not only can error-controlled
lossy compressors significantly reduce the I/O and storage
burden but they can retain high data fidelity for post analysis.
Existing state-of-the-art lossy compressors, however, gener-
ally suffer from relatively low compression and decompres-
sion throughput (up to hundreds of megabytes per second on
a single CPU core), which considerably restrict the adoption
of lossy compression by many HPC applications especially
those with a fairly high data production rate. In this paper,
we propose a highly efficient lossy compression approach
based on field programmable gate arrays (FPGAs) under the
state-of-the-art lossy compression model SZ. Our contribu-
tions are fourfold. (1) We adopt a wavefront memory layout
to alleviate the data dependency during the prediction for
higher-dimensional predictors, such as the Lorenzo predic-
tor. (2) We propose a co-design framework named waveSZ
based on the wavefront memory layout and the character-
istics of SZ algorithm and carefully implement it by using
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high-level synthesis. (3) We propose a hardware-algorithm
co-optimization method to improve the performance. (4) We
evaluate our proposed waveSZ on three real-world HPC sim-
ulation datasets from the Scientific Data Reduction Bench-
marks and compare it with other state-of-the-art methods on
both CPUs and FPGAs. Experiments show that our waveSZ
can improve SZ’s compression throughput by 6.9×∼ 8.7×
over the production version running on a state-of-the-art
CPU and improve the compression ratio and throughput by
2.1× and 5.8× on average, respectively, compared with the
state-of-the-art FPGA design.

CCS Concepts • Computer systems organization →
Reconfigurable computing;

Keywords Lossy Compression; FPGA; Software-Hardware
Co-Design; Scientific Data; Compression Ratio; Throughput.

1 Introduction
Today’s large-scale high-performance computing (HPC) ap-
plications can generate extremely large volumes of scien-
tific data. For example, the Hardware/Hybrid Accelerated
Cosmology Code (HACC) [24] can simulate 1∼10 trillion
particles in one simulation and produce up to 220 TB of
data per snapshot and a total of 22 PB of data during the
simulation [55]. The large amounts of data are an impos-
ing unprecedented burden on storage and interconnects of
supercomputers [32] for both moving data to persistent stor-
age and loading data for postanalysis and visualization. Data
reduction therefore has attracted the attention of researchers
for reducing the amount of data moved to and from storage
systems. Decimation, which involves storing one snapshot
every several time steps, undoubtedly degrades the temporal
constructiveness of the simulation and also results in the

https://doi.org/10.1145/3332466.3374525


PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Tian et al.

loss of valuable information for postanalysis. Traditional
data deduplication and lossless compression that have been
widely used for reducing data redundancy suffer from their
reduction capabilities. Because of nearly random ending man-
tissa bits of the floating-point data generated by HPC appli-
cations, deduplication typically reduces the size of scientific
dataset by only 20% to 30% [38], while lossless compression
usually achieves a reduction ratio of up to 2:1 [50]. These
reduction ratios are far from, for instance, 10 that is needed
by the Community Earth Simulation Model (CESM) [4].

Error-controlled lossy compression has been proposed re-
cently for significantly reducing the data size while ensuring
that the data distortion is still acceptable [52]. SZ [16, 52] is
a state-of-the-art error-bounded lossy compression frame-
work for scientific data (discussed in detail in Section 2.1),
which often has higher compression ratio and better rate
distortion than do other state-of-the-art techniques [32]. As
shown in prior work [16, 52], however, SZ suffers from low
compression and decompression throughput. Specifically,
SZ’s compression and decompression throughput on a single
CPU core is about tens to hundreds of megabytes per second,
which is far from enough for today’s exascale applications
or advanced instruments that may have extremely high data
production rate. For instance, the data acquisition rate on
LCLS-II can go up to 250 GB/s [7] such that the designers of
the LCLS-II data system require a solution that not only can
lead to relatively high compression ratios (e.g., 10:1) but also
can have high compression throughput. As pointed out in
[60], the key reasons for the low throughput of SZ are both
its large amounts of floating-point operations and its data
dependencies during the data prediction step.

Due to the lack of parallelism, it is hard to accelerate SZ
by leveraging manycore techniques, such as employing GPU
accelerator. GPU exhibits high throughput because of its
massive SIMT (single instruction, multiple threads) paral-
lelism, however, the tight dependency in the prediction and
quantization procedure of SZ algorithm incurs expensive
synchronizations across iterations in GPU execution. More-
over, during the lossless compression step of SZ algorithm
(see Section 2.1 for more details), encoding and decoding
each symbol according to the built Huffman tree [26] with
different branches results in random memory access pattern.
This causes serious divergence issue, inevitably leading to
low GPU memory bandwidth utilization and performance.

Field programmable gate array (FPGA) accelerator offers
many advantages, such as configurability, high energy effi-
ciency, low latency, and external connectivity [21]. Hence,
it is suitable for real-time processing such as streaming big
data analytics. Adding FPGA to the existing manycore HPC
system can also enable new use scenarios, such as ExaNet—
an FPGA-based direct network architecture of the European
exascale systems [3]. Inspired by these advantages, Xiong
[60] et al. proposed an FPGA design for SZ lossy compres-
sion, named GhostSZ, combining a deprecated version of

SZ (SZ-1.0 [16]) and the quantization technique as of SZ
version 1.4 [52], and evaluated GhostSZ on Nek5000 bench-
mark datasets [1]. According to prior work [52], SZ-1.0 suf-
fers from low prediction accuracy thus low compression
ratios, especially for multidimensional datasets, because it
adopts a 1D curve-fitting approach [16]. The modern ver-
sions (1.4+) of SZ [52] adopt Lorenzo predictor [28] instead
of 1D curve-fitting as the predictor and use linear-scaling
quantization to integerize the prediction error, which can
significantly improve the compression ratio for 2D or higher
dimensional datasets. Applying the Lorenzo predictor on
FPGAs is challenging, however, since its inherited data de-
pendencies during the prediction inhibit the fully pipelined
design. Inspired by the existing techniques for dependency
alleviation based on reshaping memory access pattern, such
as loop skewing [58], PeerWave [5], and wavefront used in
H.264 decoding [39], we propose to adopt the wavefront-like
technique to eliminate the data dependency and efficiently
pipeline SZ algorithm on FPGA, which is a starting point to
achieve fine-grained parallelism in our hardware-algorithm
co-design.

In this paper, we focus mainly on significantly improving
the compression quality and performance (including both
compression ratio and throughput) of modern SZ over the
existing state-of-the-art hardware design. We propose a new
fully pipelined hardware design named waveSZ based on
the modern SZ model, and we optimize its performance
for multidimensional datasets. waveSZ has four main steps:
wavefront preprocessing, Lorenzo prediction, linear-scaling
quantization, and gzip. Our contributions are summarized
as follows.
• We adopt a wavefront memory layout to fit into SZ algo-

rithm in order to alleviate the data dependency during the
prediction for a higher-dimensional predictor, such as the
Lorenzo predictor.
• We propose a co-design framework for SZ lossy com-

pression called waveSZ, considering the wavefront mem-
ory layout and the characteristics of SZ algorithm (e.g.,
throughput, latency, ratio, parallelism), and carefully im-
plement it on FPGA by using High-Level Synthesis (HLS).
• We propose a hardware-algorithm co-optimization to im-

prove the performance, such as optimization via HLS di-
rective and base-two algorithmic operations.
• We evaluate our proposed waveSZ on three real-world

HPC simulation datasets from Scientific Data Reduction
Benchmarks (SDRB) suite [48] and compare it with other
state-of-the-art approaches on both CPUs and FPGAs. Ex-
periments show that our waveSZ can improve the com-
pression ratio and throughput by 2.1× and 5.8× on average,
respectively, compared with the state-of-the-art FPGA im-
plementation.
The rest of the paper is organized as follows. In Section 2,

we discuss the SZ lossy compression framework in detail
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and the prior FPGA-based SZ design and its limitations. In
Section 3, we describe propose our novel design—waveSZ
and optimization strategies. In Section 4, we present the eval-
uation results based on three real-world simulation datasets
and compare waveSZ with other state-of-the-art approaches.
In Section 5, we discuss related work. In Section 6, we present
our conclusions and discuss our future work.

2 Background
In this section, we discuss the SZ error-bounded lossy com-
pression and its prior FPGA-based design and limitations.

2.1 SZ Error-Bounded Lossy Compression
Many scientific applications require strict error-controlling
scheme in lossy compression to achieve accurate postanal-
ysis and scientific discovery, as well as high compression
ratio. SZ [16, 52] is a prediction-based lossy compression
framework designed for scientific data that can strictly con-
trol the global upper bound of compression error. Given a
user-set error bound eb, SZ can guarantee | d−d• |<eb, where
d and d• are the original value and the decompressed value,
respectively. It mainly involves four key steps: preprocessing,
data prediction, linear-scaling quantization, and customized
variable-length encoding followed by an optional lossless
compression (such as gzip [14]).
1) Preprocessing SZ performs a preprocessing step, such

as linearization in version 1.0, logarithmic transform for
pointwise relative error bound in version 2.0 [31].

2) Data Prediction SZ predicts the value of each data point
by a data-fitting predictor (such as the Lorenzo predictor
[28]) based on its neighboring values. In order to guaran-
tee that the compression error can be always controlled
within the user-set error bound, the neighbor values used
in the data prediction must be the decompressed values
(i.e., the values used in the decompression) instead of the
original data values. Such a constraint makes SZ hard to
take advantage of the pipeline features in FPGA because
the data cannot be predicted until its preceding points are
compressed.

3) Linear-Scaling Quantization SZ computes the differ-
ence between the predicted value and original value for
each data point and performs a linear-scaling quantization
to convert the difference to an integer number based on
the user-set error bound.

4) Customized Variable-Length Encoding and Lossless
Compression SZ adopts a customized Huffman encoding
algorithm and a lossless compressor (such as Zstd [61])
to reduce the data size significantly, because the integer
codes generated by the linear-scaling quantization are
likely distributed unevenly, especially when the data are
mostly predicted accurately.

We list more technical details of each step for different SZ
variants in Table 2. Specifically, the aforementioned four

steps of SZ lossy compression can be decomposed into groups
of functionalities, and each group may have optional or al-
ternative designs for either better algorithmic features or
better performance. In the data prediction step, for example,
in order to estimate the data value based on its neighboring
decompressed data points, multiple options exist, such as
Order-{0,1,2} (i.e., neighboring, linear and quadratic) curve-
fitting, Lorenzo predictor, and linear regression. The Lorenzo
predictor and linear regression are designed for better predic-
tion accuracy utilizing data correlation in high dimensional
datasets; hence, they are platform agnostic. In comparison,
Order-{0,1,2} curve-fitting in GhostSZ is delicately handled
for FPGA pipelining (discussed in detail in Section 3.1). Prior
independent work [18, 32, 36] shows that SZ leads the best
compression quality among all the prediction-based compres-
sors, therefore, we focus mainly on the SZ lossy compression
model in this work.

We mainly focus on the SZ-1.4 instead of SZ-2.0 in that
the 2.0 model is more effective only in the low-precision
compression cases, which already lead to high compression
ratios and rates in general. Recent studies [7] show that
users often require a relatively high precision (or low error
bound) for their scientific analysis. In this situation, lossy
compressors may easily suffer from both low compression
ratios and rates [32, 52], significantly degrading the overall
data processing performance. Moreover, SZ-2.0 [32] has very
similar (or slightly worse) compression quality/performance
compared with SZ-1.4 when the users set a relatively low er-
ror bound. Accordingly, our design of the FPGA-accelerated
SZ lossy compression will be based on SZ-1.4, by taking ad-
vantages of both hardware and algorithmic characteristics.
Moreover, the current CPU version of SZ has no support
on SIMD (single instruction, multiple data) vectorization
such as SSE or AVX due to the inherited dependencies in SZ
algorithm, so it has no specific improvement on the arith-
metic performance. Accordingly, the CPU baseline used in
our following evaluation will be based on the non-vectorized
single-/multi-core implementation.

2.2 Prior FPGA-Based Design and Its Limitations
Few works have studied FPGA-accelerated lossy compres-
sion for scientific data. To the best of our knowledge, GhostSZ
[60] is the first work that attempts to accelerate lossy com-
pression based on the SZ model. However, it has several
drawbacks in terms of compression ratio and throughput.
1) The prediction method used by GhostSZ is based on a dep-

recated design, namely, the Order-{0,1,2} 1D curve-fitting
approach proposed in SZ-1.0 [16], because it suffers from
low prediction accuracy on high dimensional datasets.
Specifically, the Order-{0,1,2} curve-fitting approach per-
forms three prediction methods (previous-value fitting,
linear curve-fitting, and quadratic curve-fitting), which
leverage the data correlation only along one dimension,
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Table 1. Average compression ratio using SZ variants (visualized
with scaled bars). SZ uses Lorenzo (ℓ) predictor, and GhostSZ uses
modified Order-{0,1,2} predictor. Both compress at the error bound
of 10−3, relative to the data range.

dimensions GhostSZ SZ-1.4

Climate CESM-ATM 1800×3600 7.9 31.2
Hurricane ISABEL 100×500×500 6.2 21.4
Cosmology NYX 512×512×512 6.6 33.8

leading to very limited prediction accuracy. Figure 1 shows
the distributions of prediction errors (i.e., the difference be-
tween the real value and predicted value) based on the lin-
ear curve-fitting (denoted by CF-SZ-1.0) and the Lorenzo
predictor (denoted by LP-SZ-1.4). We can clearly observe
that the Lorenzo predictor has a higher prediction accu-
racy (lower prediction error) than does curve-fitting on
2D/3D datasets. More details can be found in [52].

2) The Order-{0,1,2} curve-fitting approach adopted by Gho-
stSZ is a variant of the original version (denoted by CF-
GhostSZ). CF-GhostSZ predicts the value for each data
point based on the predicted values of previous points
rather than the decompressed values. However, the pre-
dicted value without any error correction may lead to
inaccurate prediction for the following data points and
hence the overall low prediction accuracy, as illustrated
in Figure 1.

3) The prediction method used by GhostSZ may cause a
significant waste of FPGA computation resources and a
workload imbalance issue. According to the Order-{0,1,2}
1D linear curve-fitting approach, GhostSZ needs to calcu-
late three predicted values by different prediction methods
and choose the bestfit value for the following quantization.
As such, GhostSZ has to use three FPGA units to perform
the prediction simultaneously for each data point, signifi-
cantly wasting the FPGA computation resources. On the
other hand, the three prediction methods have largely dif-
ferent computation workloads, causing a significant load
imbalance issue on the corresponding FPGA units. For
instance, the quadratic curve-fitting incurs twice the com-
putation workload as that of linear curve-fitting; hence,
the FPGA units assigned for the linear curve-fitting would
stay idle much of time.
We evaluate GhostSZ on three representative real-world

HPC simulation datasets from the Scientific Data Reduction
Benchmarks (SDRB) suite [48], which has been widely used
by many previous studies [7, 30–33, 53] in the scientific data
reduction community. Table 1 shows that GhostSZ has a
lower compression ratio than do SZ-1.4 [52] on all the three
scientific datasets, under the same lossless compressor gzip
and typical value-range-based relative error bound of 10−3

[15]. This is due to the much lower prediction accuracy in
GhostSZ, as demonstrated in Figure 1.

Distribution of Prediction Errors
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Figure 1. Distributions of prediction errors (right: zoomed in)
using different predictors on a typical variable CLDLOW in
CESM-ATM dataset.

(x−1,y) (x,y)

(x,y−1)(x−1,y−1) −

+

+

(x−1,y, z) (x,y, z)

(x,y−1, z)(x−1,y−1, z)

(x−1,y, z−1) (x,y, z−1)

(x,y−1, z−1)(x−1,y−1, z−1)
−

−

−

+

+

+

+

Figure 2. Single-layer 2D and 3D Lorenzo predictor. The signum
(+/−) of a value involved in the prediction is given by (−1)L+1,
where L is Manhattan distance from the current point. Left: four
neighbor points for

(
ℓ I

2D
)
; right: eight neighbor points for

(
ℓ I

3D
)
.

3 Proposed Design of waveSZ
The key challenges that impede the SZ-1.4 from further ac-
celeration are the tight data dependencies and stalls during
the prediction: the prediction of each data point cannot be
conducted until the decompression of its preceding neigh-
bor points is finished. To alleviate this undesired stall, we
adopt a wavefront memory layout [58]. We also propose
several strategies based on HLS directive to optimize the
performance based on the wavefront memory layout.

3.1 Wavefront Memory Layout
For demonstration, we first describe the inevitable data de-
pendency and stall issue during the prediction step in the
modern SZ model, by using the Lorenzo predictor as an ex-
ample. We then discuss how the wavefront memory layout
alleviates this issue.

As illustrated in Figure 2,
(
ℓ I

2D
)

[52] can be formulated as

P(x,y) = dot
( [−1 1

1 0

]
,

[
dx−1,y−1 dx,y−1
dx−1,y dx,y

] )
,

and
(
ℓ I

3D
)

is formulated as

P(x,y,z) = dot
( [

1 −1
−1 1

]
,

[
dx−1,y−1 dx,y−1
dx−1,y dx,y

] )
(z−1)

+ dot
( [−1 1

1 0

]
,

[
dx−1,y−1 dx,y−1
dx−1,y dx,y

] )
(z)
,

Based on these formulas, we can clearly observe that three
and seven neighboring points will be involved in the compu-
tation for 2D and 3D cases, respectively, in order to predict
each data point. With this feature, the prediction on one
point cannot start until all its depending data points are fully
processed through three steps: prediction, quantization, and
decompression (denoted by PQD). In the following sections,
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version platform base preprocessing prediction lossy encoding lossless
0.1—1.0 • • • • • • • •

1.4 • • • • • • • •
2.0+ • • • • • • • • • • ⋆ ⋆

GhostSZ • • • • • • • • • • • •
waveSZ • • ⋆ ⋆ • • • • • • •

Table 2. SZ variants: functionality modules and design goals. ■ performance-oriented ■ data-quality-oriented
• required ⋆ exclusively optional (P) pan-platform (S) platform-specific

we will keep using 2D Lorenzo predictor to illustrate our
proposed designs, which can be simply expanded to 3D or
even higher-dimensional cases.

Figure 3a shows a partition of the dataset in the memory
layout that is adopted by the original SZ. The highlighted
four-point cell illustrates an example of an ongoing predic-
tion: using the 2D Lorenzo predictor on (2, 2), (2, 3), (3, 2) to
predict (3, 3). The prerequisite of predicting (3, 3) is that the
decompression on the depending points (2, 2), (3, 2), (2, 3)
is completed. Generally, for 1-layer 2D Lorenzo prediction,
each data point depends on its upper and left three points in
the memory layout (see the yellow cells in Figure 3a). After
backtracking the data partition, we can visualize all the de-
pendencies in Figure 3b. Specifically, given a pivot (0, 0) in a
data partition, each data point n can calculate a Manhattan
distance i between the pivot and itself. We use (L1(n, 0) = i)
or simply (L1 = i) to represent this Manhattan distance. We
note that the data point with (L1=i) has dependencies on its
two neighboring points with (L1= i−1) and one upper-left
neighboring point with (L1 = i−2), while it does not have
any dependency with its upper-right and lower-left points
with (L1 = i). In other words, all the points with the same
Manhattan distance do not have dependency with each other.
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Figure 3. Memory layout and data dependency in original SZ.

The current production SZ version implements the com-
putation iterations in a simple double loop (for 2D cases)
in terms of the original SZ cell indices. Thus, it must be
against the dependency-free path, no matter what direction
of the loop iteration is. For example, suppose the iteration
moves forward from (3, 3) to (3, 4), (3, 4) (L1 = 7) cannot
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(b) GhostSZ data dependency in L1.

Figure 4. Memory layout and data dependency in GhostSZ.

start its prediction until (3, 3) (L1=6) finishes its decompres-
sion. Therefore, processing the data from the pivot (0, 0)
in the original SZ faces inevitable stalls, significantly low-
ering its compression throughput. Although GhostSZ [60]
manages to eliminate the dependencies by decorrelating the
data into independent rows (as illustrated in Figure 4a), it
suffers from relatively low compression ratios, especially for
high-dimensional datasets. Specifically, GhostSZ ignores the
correlation along the vertical direction so each row can per-
form the computation horizontally and independently. After
the decorrelation, each row has its own starting point (or
pivot), which is (⋆, 0). Similar to Figure 3b, we can visualize
each point’s Manhattan distance based on the rowwise pivot
for GhostSZ. We can observe that the points within the same
column have the same Manhattan distance; thus, the start of
processing each point within the same column can be staged
in a pipeline. GhostSZ designed this data decorrelation ap-
proach for higher compression throughput. However, the
original 2D data partition is downgraded to 1D form, such
that the data have to be predicted by using a 1D data predic-
tor (such as the Order-{0,1,2} curve-fitting approach), which
exploits the intrinsic correlation information only along one
dimension. In summary, the design principle of GhostSZ
focuses on improving the compression throughput while
reducing the ratio unexpectedly (also verified in Section 2.2)
compared with the modern SZ compression model.

Unlike GhostSZ, we adopt a wavefront [58] memory lay-
out to reorganize the data access orders such that the modern
SZ model can be applied to FPGAs without degradation of
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Figure 5. Memory layout and data dependency of waveSZ.
compression ratios. Specifically, we note that we can pre-
serve the data correlation only by radically changing the
memory layout. As mentioned previously, data dependency
is the root cause of stalls in accessing the data points that
have not finished their decompression, as shown in Figure 3b.
To resolve this issue, we reorganize/preprocess the memory
layout into the wavefront form, as shown in Figure 5a. The
wavefront memory layout can put the points with the same
Manhattan distance (from the pivot (0, 0)) in a column, as
shown in Figure 5b. Because the data points with the same
Manhattan distance are not dependent on each other, the data
points in the same column now are dependency free. Thus,
when compression is performed vertically, there will be no
data dependency and no stall. This design of dependency-
free spatial mapping effectively avoids the undesired data
decorrelation in GhostSZ from the perspective of algorithmic
features and avoids wasting resources during the prediction
with respect to the performance.

3.2 HLS-Based Co-Design
We design and optimize the SZ algorithm based on the coor-
dination of the dependency-free memory layout (i.e., wave-
front memory layout) and data access pattern (e.g., for-loop
iteration in our case), of which the latter is programmed and
supported by the hardware architecture. The tight correla-
tion in the SZ prediction model and implementation can be
expressed as threefold: (1) the interdimensional association
of the dataset, which is a basis of the data reproducibility, (2)
the algorithmic spatial and/or temporal dependency, which
is discussed in Section 3.1, and (3) the hardware featured
computational paradigms, of which we focus on pipelining.

As discussed in the preceding section, fully decorrelating
the data would sacrifice the compression ratio. Instead, we
propose to alleviate the data dependency by staging the pre-
diction and quantization delicately, rather than adopting the
simple instruction-level parallelization such as the single
instruction, multiple threads model. Continuing with the 2D

dataset example, the data points are iterated sequentially in
the double for-loop (each fold for one dimension). To accel-
erate the whole computation, we adopt staging techniques
such as loop unrolling and pipelining, since both of them can
further exploit the parallelism of inner-loop iteration. More
specifically, three key facts motivates us to use FPGA rather
than CPU as our target hardware platform. (1) The degree
of loop unrolling and pipelining is implicitly limited by the
number of logic units (such as arithmetic logic unit) on the
CPU, which prevents us from utilizing a deeper pipeline. (2)
Loop unrolling and pipelining are usually controlled by the
compiler rather than the program; in fact, no such primitive
exists on the CPU platform that we can utilize to directly
control pipeline, thus preventing us from designing a more
sophisticated pipeline structure. (3) Even under the same
pipeline structure, the FPGA has better performance than
does the CPU, because it has more computing units than the
CPU. Therefore, we use the FPGA as our target hardware
platform supported by C/C++ based HLS [20] for the desired
loop-unrolling factor and controllability of loop unrolling
and pipelining, and hence higher throughput. C/C++ based
HLS can provide good capabilities for implementing the lossy
compression algorithm using the wavefront memory layout
more programmable compared with VHDL and Verilog [13].

Figure 6 demonstrates our HLS-based design, which in-
volves both a spatial memory layout and a temporal data
access pattern. We implement the double loop in column-row
order (inner-outer order). The compression iterator moves
vertically from the top to the bottom first and then switches
to the next column on the right. Since the vertical depen-
dency has been removed, the time for the iterator moving
down by one data point in the inner loop is the pipeline Ini-
tiation Interval (abbreviated as pII, i.e., the number of cycles
between the starts of two adjacent loop iterations), which is
set to 1 cycle in our case. We discuss the value of pII in the
synthesis analysis (Section 3.3) . We use Λ to denote the num-
ber of points per column and ∆ to denote the time (cycles) to
process PQD for each point. Thus, the Λ points in a column
can start every 1 cycle (due to pII = 1, according to the HLS
synthesis report) sequentially, which costs Λ cycles in total.
Ideally, in order to eliminate all the pipeline stalls, the time
∆ for the iterator moving from the top of one column to the
top of the next column should be equal to the Λ cycles, that
is, ∆=Λ. In other words, the ∆ can be mapped perfectly onto
the Λ points in the memory layout (temporal to spatial).

We provide detailed timing analysis for the ideal case, as
follows. Note that the global index for a point is not the
row-column position after the wavefront memory layout
preprocessing. Given a point (r , c) at row r and column c ,
we can derive its starting time and ending time to process
PQD, respectively. Since the inner loop iterates vertically,
the starting time of processing (r , c) can be calculated as the
summation of running r outer (column-wise) loops and c
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Figure 6. Memory layout with timing annotated. Λ stands for the vertical dimension of the data partition. ∆ stands for the cycles of
prediction, quantization, and decompression for each point.

inner (row-wise) loops. It takes one cycle to the next inner-
loop iteration and Λ cycles to proceed to the next outer-loop
iteration. Thus, the starting time of (r , c) against (1, c) (the
first point in the same column) is increased by (r−1) cycles,
and the starting time of (1, c) against (1, 1) (the first point
in global) is increased by (c×Λ) cycles. Overall, the global
starting time of (r , c) is (c×Λ+r ). Also, we can derive the
ending time of (r , c), which is Λ cycles after its starting time,
in other words,

((c+1) × Λ + r −1
)
. Note that the starting

time of (r , c+1) is one cycle after the ending time of (r , c).
From the perspective of programming, we further divide

outer-loop columns into three groups: head, body, and tail,
as shown in Figure 6. Each columnwise inner loop in the
body will perform the same floating-point operations on
the same number of points; thus the loop in the body is
called a “perfect” loop. However, the loops in head and tail
are “imperfect” because their execution times vary across
different columns. We find that a stall does not occur in the
“perfect” loop, which completely follows the aforementioned
temporal-spatial mapping. In comparison, stalls still exist
in the “imperfect” loop, but the number of points in head
and tail is much smaller than the number of points in the
no-stall body. This partition can help the program eliminate
the if-branch for calculating the ending index, because the
number of points can be computed directly based on the
column index for head and tail.

In addition, in the original SZ, the boundary points in the
first column and first row are marked as unpredictable data
(blackened points), which are handled by a truncation-based
binary analysis [16]. In comparison, our waveSZ directly
passes the unpredictable data to the lossless compressor (i.e.,
gzip) instead of truncation for higher throughput. Since the
linear-scaling quantization method using 16-bit quantization
bins can cover most of the prediction errors (e.g., > 99%), few
points would be affected by this change.

3.3 Hardware-Algorithm Co-Optimization
We propose a hardware-algorithm co-optimization strategy to
optimize the performance not only on the hardware level but
also on the algorithmic level. Figure 7 presents the overall

system architecture based on our proposed waveSZ. Specif-
ically, on the host CPU it conducts the preprocessing for
the wavefront memory layout; and on the device FPGA it
involves the hardware designs of fully pipelined Lorenzo
prediction, linear-scaling quantization, and decompression
with the Huffman coding. Note that the preprocessing step
to form the wavefront memory layout is basically memory
copy, which can be pipelined and overlapped with other
steps on FPGA. The compressed data will be stored in an-
other computing or storage device. Similar to prior work
[60], we demonstrate the use case by transferring the com-
pressed data from the FPGA back to the host CPU. In the
real HPC scenarios, the use case can be accelerating the data
transfer to the parallel file system through the I/O node.

To optimize the overall performance, we develop an HLS
directive-based optimization method (hardware level) and re-
duce the time cost of running PQD by performing exponent-
only operation (base-2 operation), detailed in the following
text.
Optimization via HLS Directive The HLS code snippet
for three groups of iterations is shown in Listing 1. Specifi-
cally, we mainly focus on optimizing the most computation-
intensive loops. In our implementation, we mix-use HLS
directives and HLS-supported C-syntax pragmas. For more
direct demonstration, we show only the pragmas in the listed
code. First, the three double-loops are labeled as Head-, Body-,
and Tail-. The outer and inner loops for each group are la-
beled as -H (stands for “horizontal” iteration direction) and
-V (stands for “vertical” iteration direction), respectively. This
notation is used to mark the six loops for HLS-specific opti-
mization. The pragma residing in the inner loop (e.g., (line 10)
in Listing 1) is used for unrolling the inner-loop iterations.
Ideally, the inner loop can be unrolled by a factor of the
pipeline depth Λ for the perfect body loop. However, since
the inner-loop termination conditions vary across head and
tail loops, these two groups of loops cannot be unrolled by
the factor of Λ, and their unrolling factor will be determined
by the synthesis tool automatically. Note that for pipelining
(line 11), we set the pII to 1 cycle; however, if the pipelining
cannot be performed with (pII=1) during the synthesis, the
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synthesis tool will relax the restriction of (pII= 1) to the
smallest value to reduce the latency. In addition to the loop
unrolling and explicit pipelining, we hardcoded the pipeline
depth via template metaprogramming (line 2 in Listing 1).
The hardware-resource utilization will be discussed in the
evaluation section.
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Figure 7. Overall system architecture based on waveSZ.

Listing 1. HLS code snippet for the {head, body, tail}-loop
iterations

1 template <typename T, typename Q, int PIPELINE_DEPTH >

2 void wave(int d0 , int d1, /* dimensions */

3 T* data , Q* quant_code) {

4 /* the first row is the dependency. */

5 assert(PIPELINE_DEPTH == d0 -1);

6 size_t h, v, NW, N, W, /* global idx*/_gi , _idx = 1;

7 HeadH: for (h=1; h<d0; _idx+=h+1, h++)

8 HeadV: for (v=0; v<h; v++) {

9 #pragma HLS unroll

10 #pragma HLS PIPELINE II = 1

11 NW = _idx+v-h; N = _idx+v;

12 W = _idx+v+1; _gi = _idx+(v+1)+(h+1);

13 T pred = Lorenzo_2D1L <T>(data , NW, N, W);

14 quantize <T, Q>(pred , data , _gi , quant_code); }

15 BodyH: for (h=d0; h<d1 -1; _idx+=d0, h++)

16 BodyV: for (v=0; v<d0 -1; v++) {

17 #pragma HLS unroll

18 #pragma HLS PIPELINE II = 1

19 NW = _idx+v-d0; N = _idx+v;

20 W = _idx+v+1; _gi = _idx+(v+1)+d0;

21 T pred = Lorenzo_2D1L <T>(data , NW, N, W);

22 quantize <T, Q>(pred , data , _gi , quant_code); }

23 TailH: for (h=d1 -1; h<d1-d0; _idx +=(d1+d0)-h, h++)

24 TailV: for (v=h-d1+1; v<d0 -1; v++) {

25 #pragma HLS unroll

26 #pragma HLS PIPELINE II = 1

27 NW = _idx+v-d0; N = _idx+v;

28 W = _idx+v+1; _gi = _idx+(v+1)+d0;

29 T pred = Lorenzo_2D1L <T>(data , NW, N, W);

30 quantize <T, Q>(pred , data , _gi , quant_code); } }

Base-2 Operation In compliance with the widely used
IEEE-754 (2008 rev.) standard [11], a floating-point number,
with regard to precision, can be represented as float{16,

32, 64, 128, 256}, 1 among which the single- and double-
precision are hardware supported in the general-purpose
systems. For example, 32-bit float is represented in bits as
(−1)signum × 2(exponent−127) × (1 • b22 · · ·b00).

The original SZ adopts an arbitrary user-set error bound,
which is likely not power-of-two, leading to disordered man-
tissa bits (mixed with 0 and 1) in its binary representation.
For example, Table 3 shows typical decimal bases, which are
1Half-, single-, double-, quadruple-, octuple-precision, respectively.

Algorithm 1 Computation of prediction, quantization, and decompression.

input: current data point: dx,y ; dependencies: dx−1,x−1, dx−1,y , dx,y−1;
prediction: pred; max. quantizable #: capacity; precision p ; radius r

intermediate: decompressed value: dre; quantization code: code
1 pred ← ℓ

(
dx−1,y−1, dx−1,y, dx,y−1

)
▷ 1-layer 2D Lorenzo (ℓ I

2D)
2 diff ← dx,y− pred
3 dori ← dx,y ▷ register the original value
4 code◦ ← |diff/p | + 1
5 if code◦ < capacity then ▷ check if quantizable
6 code◦ ← (diff > 0) ? code◦ : −code◦

▷ change the signum (+/−) of code◦ according to diff
7 code• ← cast_to_integer

(
code◦/2

)
+ r

8 dre ← pred + 2 × (code• − r ) × p ▷ SZ, waveSZ
9 write back dre to where d(0,0) was

write back pred to where d(0,0) was ▷ GhostSZ
10 return code• if |dre − dori | ≤ p ▷ overbound check
11 end if
12 write back dori to where dx,y was
13 return 0 ▷ 0 for non-quantizable

represented with 0-1 mixed (non-zero) mantissa bits. Using
such arbitrary numbers as divisors, the division operations
used for integerization in the quantization step have to do
full-featured arithmetic calculations, which is relatively ex-
pensive because it is usually handled by dedicated hardware
such as DSP on FPGA and FPU on CPU. By tightening the
user-set error bound to its nearest smaller power-of-two (e.g.,
10−3 to 2−10=1/1024), we can instead perform exponent-only
calculations, i.e., addition and subtraction operations in ex-
ponent, which can further improve the overall throughput.
Table 3. Binary representation of decimal basis correspondence to
23 mantissa bits.

decimal bases binary representation
0.1, or 1e−1 (1.1001100110011 · · · )2 × 2−4

0.01, or 1e−2 (1.0100011110101 · · · )2 × 2−7

0.001, or 1e−3 (1.0000011000100 · · · )2 × 2−10

0.0001, or 1e−4 (1.1010001101101 · · · )2 × 2−14

0.00001, or 1e−5 (1.0100111110001 · · · )2 × 2−17

0.000001, or 1e−6 (1.0000110001101 · · · )2 × 2−20

0.0000001, or 1e−7 (1.1010110101111 · · · )2 × 2−24

4 Experimental Evaluation
In this section, we present our experimental setup (includ-
ing the testbed, tested datasets, baselines, and performance
metrics) and our evaluation results.

4.1 Experimental Setup
Experimental Platform We use two systems as our test-
bed. The first system is a CPU node from the PantaRhei
cluster [41] from The University of Alabama, equipped with
Intel Xeon Gold 6148 processors running at 2.4 GHz. The sec-
ond system is a Xilinx Zynq-7000 SoC ZC706 FPGA platform.
waveSZ is implemented with Vivado High-Level Synthesis
[56] from the Vivado Design suite [17] (v.2019.1). We use
Xilinx Floating-Point Operator IPs for floating-point arith-
metic. The IP configuration is set for the highest frequency
when it is possible. The default frequency is 156.25 MHz. We
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adapt the pipeline configuration (such as pipeline depth) to
the dimension of each dataset.

Test Datasets We conduct our evaluation and comparison
based on three typical 2D and 3D real-world HPC simula-
tion datasets from SDRB suite [48]: 2D CESM-ATM climate
simulation [12], 3D ISABEL hurricane simulation [27], and
3D NYX cosmology simulation [40]. They have been widely
used in much prior work [7, 31–33, 53] and are good rep-
resentatives of production-level simulation datasets. Each
dataset involves multiple snapshots and a diversity of fields.
Table 4 presents all 105 fields across these datasets. The data
sizes per snapshot are 2.0 GB, 1.9 GB, and 3.0 GB for the
above three datasets, respectively.

Table 4. Real-world datasets used in evaluation.
# fields type dimensions example fields

CESM-ATM 79 float32 1800×3600 CLDHGH, CLDLOW
Hurricane 20 float32 100×500×500 CLOUDf48, Uf48
NYX 6 float32 512×512×512 baryon_density

Comparison Baselines We compare our waveSZ with
two baselines: SZ-1.4 (the software version that we use in
waveSZ), and GhostSZ [60]. For SZ-1.4, we adopt the default
setting: 16 bits for linear-scaling quantization (i.e., 65,536
quantization bins), best_compression mode for SZ, and
best_speed mode for gzip, which can lead to a good trade-
off between compression ratio and performance. We imple-
ment GhostSZ strictly based on [60]. We adopt the FPGA
hardware design of gzip [59] developed by Xilinx for both
GhostSZ and waveSZ. We use 16 bits to represent one quan-
tization bin in waveSZ, so its number of quantization bins
is up to 65,536. Although GhostSZ also uses 16 bits to rep-
resent one quantization bin, it can only generate at most
16,384 bins because it needs to use 2 bits to encode the bestfit
curve-fitting approach in Order-{0,1,2}. This will increase
the number of unpredictable data points, degrading the com-
pression ratios in turn. For all the experiments, we use the
typical value-range-based relative error bound of 10−3 [15].
Note that since waveSZ uses base-2 operations, we calculate
the power-of-2 error bounds that are closest to the value-
range-based relative error bound of 10−3. We use GCC-7.3.0
to compile the software implementations.

Performance Metrics We evaluate each SZ variant using
three metrics: throughput, compression ratio, and peak signal-
to-noise ratio (PSNR). Throughput is defined as the number
of data points processed (such as compression) per second.
Similar to prior work [60], the latency of the entire com-
pression process (excluding the file loading and dumping
time) is measured as the period from the moment that FP-
GA/CPU receives the data through the moment that the
whole compression is finished with output bytes. Compres-
sion ratio is defined as the ratio of original data size to the
compressed data size. PSNR is a commonly used indicator

to assess the distortion of data during lossy compression,
which is defined as PSNR = 20 · log10

[(dmax− dmin)/RMSE
]
,

where N is the number of data points and dmax and dmin
are the maximal and minimal values, respectively. RMSE
represents root mean squared error, which is obtained by
sqrt

[ 1
N
∑N

i=1
(
di − d•i

)2] , where di and d•i refer to the origi-
nal and decompressed data values, respectively. The larger
the PSNR, the lower the RMSE, meaning lower distortion of
reconstructed data and hence more accurate postanalysis.

4.2 Evaluation Results and Analysis
Table 5. Comparison of compression throughput (MB/s).

waveSZ GhostSZ SZ-1.4

CESM-ATM 995 185 114
Hurricane 838 144 122
NYX 986 156 125

We first evaluate the throughput of waveSZ on FPGA
with single lane and compare with the throughput of original
SZ on CPU with single CPU core. We present the compres-
sion throughput results in Table 5, showing that waveSZ on
FPGA has 6.9× to 8.7× higher compression throughput than
does SZ-1.4 on the CPU, respectively. This is because of the
low-data-dependency memory layout and highly pipelined
design in waveSZ. Compared with GhostSZ, waveSZ can
achieve 5.8× improvement on average due to its lower num-
ber of computing units used for prediction per point. We note
that since waveSZ requires generating the decompressed
value of each point, it needs a relatively deeper pipeline
depth (i.e., Λ). As discussed in Section 3.2, the pipeline depth
can be mapped onto a partition of the data in the “body”-loop
iterations. Therefore, a deeper pipeline would affect only the
latency of the boundary data points while maintaining the
overall high throughput. Note that we only focus on the
compression throughout in the evaluation because the com-
pressed data would be transferred and stored to the parallel
file systems after waveSZ compression, and users mainly
use the SZ on CPU to decompress the data for postanalysis
and visualization instead of FPGA.

Table 6 shows the FPGA resource consumption. Note that
the table shows the utilization of three parallel PQD proce-
dures in waveSZ, in order to match GhostSZ’s Order-{0,1,2}
procedure (with three predictors), taking into account the ad-
equate hardware resource. We note that waveSZ consumes
much smaller amount of resources than GhostSZ does on a
single pipeline. We expect the scalability would be limited
by gzip’s BRAM consumption (e.g., 303 as shown in the ref-
erence website [59]) and the PCIe bandwidth (e.g., 4× PCIe
2.1 operating at 5 Gb per lane in ZC706).

We then evaluate the throughput of waveSZ on FPGA
with multiple lanes and compare with the throughput of
original SZ with multiple CPU cores using its OpenMP imple-
mentation. In Figure 8, we present the parallel compression
throughputs of SZ-1.4, GhostSZ), and waveSZ. Note that
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since the 32-core throughput of SZ-1.4 is almost identical
to its 40-core throughput, we only show the results up to
32 CPU cores. It is also worth noting that the OpenMP im-
plementation in the modern versions (1.4+) of SZ supports
only 3D datasets, thus, we only evaluate the 3D Hurricane
and NYX datasets. We observe that the throughput of SZ-
1.4 using OpenMP increases sublinearly with the number
of CPU cores because of the context switch, and its parallel
efficiency drops to as low as 59% at 32 cores. Figure 8 also
illustrates that the throughputs of GhostSZ and waveSZ on
FPGA can scale up linearly, and their parallelism/throughput
would be limited by the hardware resource, such as BRAM
capacity, number of PCIe lanes, and overall PCIe bandwidth.
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Figure 8. Parallel compression throughput (MB/s).

Table 7 compares the compression ratios among differ-
ent compressors. The average compression ratio of waveSZ
is 1.6×, 2.1×, and 2.7× higher than that of GhostSZ on the
CESM-ATM, Hurricane, and NYX datasets, respectively. The
main reason is that the Lorenzo predictor used by waveSZ
has a higher prediction accuracy than does the variant of
Order-{0,1,2} curve-fitting approach used by GhostSZ, as
discussed in Section 2.2. We also observe that SZ-1.4 leads
to higher compression ratios than do the FPGA-based ver-
sions (either waveSZ or GhostSZ because of the customized
Huffman coding (i.e., 16-bit or 4 bytes per symbol) proposed
by the original SZ model. Since FPGA versions for the cus-
tomized Huffman coding algorithm do not yet exist, waveSZ
and GhostSZ adopt the FPGA-based gzip developed by Xil-
inx [59] for simplicity, which may significantly limit the
compression ratio. For demonstration purposes, we further
apply the customized Huffman coding (denoted by H⋆) be-
fore the gzip (denoted by G⋆) in waveSZ. Table 7 shows
that after applying the customized Huffman coding, waveSZ
can get the similar compression ratios as SZ-1.4 (i.e., the
software version of waveSZ). However, since designing a
high-efficient customized Huffman coding on FPGAs is not
the focus of this paper, we leave it for the future work.

We assess the compression errors for all four compres-
sors. We note that they all satisfy the requirement of rel-
ative error bound 10−3. As shown in Table 8, waveSZ has
similar PSNRs on the tested datasets compared with SZ-1.4.

Table 6. Resource utilization from synthesis
total waveSZ (%) GhostSZ (%)

BRAM_18K 1,090 9 0.84 20 1.83
DSP48E 900 0 0.00 51 5.67
FF 437,200 4,473 1.02 12,615 2.89
LUT 218,600 8,208 3.75 19,718 9.02
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Figure 9. Compression errors analysis for waveSZ and GhostSZ
on a typical variable CLDLOW in CESM-ATM. Left: error distribution.
Right: (1) original data, (2) absolute value of waveSZ compression
error, and (3) absolute value of GhostSZ compression error.
GhostSZ has a slightly higher PSNR than do the other three
approaches, which can be explained by analyzing the distri-
bution of compression errors. For instance, Figure 9 shows
that the compression error of GhostSZ is distributed a little
bit more concentratedly than that of waveSZ. The reason
is that there are some regions with very similar values in
the dataset (see the top and bottom area in Figure 9(1), such
that the bestfit method in Order-{0,1,2} would always be the
previous-value fitting in these areas. It may have a relatively
high chance of predicting the data value accurately in such
regions, which can be verified in Figure 9(3). By comparison,
the Lorenzo predictor adopted by waveSZ has a better pre-
diction accuracy overall (as shown in Figure 1) but relatively
lower chance of getting a high prediction accuracy in the
similar-value areas (as verified Figure 9(2), leading to an even
distribution of compression errors.
Table 7. Comparison of compression ratio (visualized with scaled
bar) with 10−3 relative error bound. H⋆: customized Huffman
encoding (if in use, followed by gzip); G⋆: using gzip. Note that
border points are counted as unpredictable data in waveSZ.

CESM-ATM Hurricane NYX

GhostSZ 7.9 6.2 6.6
waveSZ G⋆ 12.3 13.2 18.3

H⋆G⋆ 29.4 20.3 34.8
SZ-1.4 31.2 21.4 33.8

Table 8. Comparison of PSNR (dB) with 10−3 relative error bound.
GhostSZ waveSZ SZ-1.4

CESM-ATM 73.9 65.1 64.9
Hurricane 70.6 66.0 65.0
NYX 74.5 66.5 65.2
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5 Related Work
5.1 Scientific Data Compression
Scientific data compression techniques have been studied for
decades. Generally, data compressors can be split into two
categories: lossless and lossy. Lossless compressors designed
for floating-point data such as FPC [6] and SPDP [9] can
guarantee the decompressed data completely lossless, but
they cannot significantly reduce the simulation data size
because of random ending mantissa bits of the floating-point
values [23]. In absolute terms, the compression ratios of
lossless compressors are around 2:1 [50] on scientific datasets,
far lower than the user-desired level of around 10:1 [7].

Error-bounded lossy compressors have been developed
as an important option to significantly reduce the scien-
tific simulation data size while guaranteeing the decom-
pressed data fully respects user-specified error bounds. Ex-
isting error-bounded lossy compressors are designed by ei-
ther a prediction-based model [8, 16, 22, 29, 31, 35, 52] or a
transform-based model [10, 34, 47, 54, 57]. Recent research
studies illustrated that SZ (prediction-based model) and ZFP
(transform-based model) are two leading lossy compressors
for HPC scientific data. Lu et al. [36], for example, evaluated
multiple compressors using nine HPC simulation data sets
and concluded that SZ and ZFP are the two best compressors
in their class. Furthermore, Tao et al. [53] proposed an online
selection method that can automatically select the bestfit
lossy compressor between SZ and ZFP, based on their obser-
vation that neither SZ nor ZFP can always lead to the best
compression quality over the other across multiple fields in
different data sets.

5.2 FPGA-Accelerated Data Compression
FPGA-based lossless compression has been studied for deca-
des, especially because of increasing demand on compres-
sion throughput. Many lossless compression algorithms have
been optimized and implemented on FPGAs. For example,
Huang et al. [25] implemented the Lempel-Ziv algorithm on
Xilinx FPGA chips. Rigler et al. [44] proposed a hardware
implementation of the DEFLATE compression algorithm (in-
cluding LZ77 algorithm and Huffman encoding) on Altera
FPGAs. Their work, however, still suffers from relatively
low compression throughput because the data hazards in
compression algorithms such as LZ77 limit the creation of
deep pipelines without sacrificing compression quality. To
solve this issue, vendors developed several scalable high-
throughput pipeline implementations [2, 19, 37] thanks to
improvements in the gate number and I/O bandwidth. IBM
[37] proposed an implementation of the DEFLATE algorithm
for FPGAs with 4 GB/s throughput at 16 bytes/cycle. Altera
[2] implemented LZ77 for FPGAs by using their OpenCL
compiler and achieved the same throughput as IBM did. Mi-
crosoft [19] proposed a fully pipelined FPGA accelerator for
the DEFLATE algorithm that can achieve a throughput of

5.6 GB/s. They also explored trade-offs between compres-
sion quality and FPGA throughput. Qiao et al. [42] further
improved the throughput and overall system efficiency of
the FPGA DEFLATE accelerator by exploiting a multiway
parallel design. Besides DEFLATE, some other lossless com-
pression algorithms such as Burrows-Wheeler Transform
lossless compression [43] have been studied. Unlike these
industry solutions only focusing on lossless compression,
our lossy compression can significantly reduce the storage
overhead due to much higher compression ratios.

However, few studies in the scientific community have
investigated FPGA-accelerated lossy compression for scien-
tific data. Existing work [45, 46, 49, 51] has focused mostly
on lossy compression for image and video data rather than
scientific data. Recently, GhostSZ [60] was proposed to accel-
erate a deprecated version of SZ lossy compression [16] (i.e.,
SZ-1.0) at line rate. Their experimental results, based mainly
on synthetic HPC application data, showed 8.2× speedup by
using on FPGAs compared with on state-of-the-art CPUs,
illustrating the potential success of SZ lossy compression
framework on FPGAs.

6 Conclusion and Future Work
In this work, we propose a highly efficient FPGA-based lossy
compression approach called waveSZ, which can improve
the compression throughput significantly for SZ. Our solu-
tion adopts the wavefront memory layout to alleviate the
data dependency during the prediction for multidimensional
predictors and datasets. We also propose HLS directive-based
optimizations and use base-2 algorithmic operations to elim-
inate the expensive overbound check for each point. Exper-
iments on three real-world HPC simulation datasets show
that our proposed waveSZ can improve the compression
throughput by 6.9×∼8.7× on average over the CPU version.
Compared with the existing FPGA-based SZ, waveSZ can
improve the compression ratio by 2.1× and the throughput
by 5.8× averagely on the tested datasets and FPGA. We plan
to implement the FPGA version for the customized Huffman
encoding, which can further improve compression ratios
especially for high-dimensional datasets.
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A Appendix: Artifacts
Accessible via this Google Drive link (history archive) and this
GitHub repository.

A.1 Preface
A list of claims from the paper supported by the artifact, and
how/why The artifact is in support of compression ration related
results, which are shown in Table 7 and 8. We provide the step-by-
step instruction all the related datasets in this appendix.

A list of claims from the paper not supported by the artifact
This artifact does not support the throughput shown in the paper,
because it needs specific hardware and proprietary toolchain, which
are not applicable to reviewers.

A.2 Getting Started
Please untar/unzip artifact archive to /tmp.

Listing 2. Setup: SZ-1.4
wget -P /tmp \
https://github.com/disheng222/SZ/archive/v1.4.13.5.zip

cd /tmp; unzip v1.4.13.5.zip
cd SZ-1.4.13.5
./configure --prefix=/tmp/sz1.4_install
make && make install

Modify /tmp/SZ-1.4.13.5/example/sz.config by changing line
40 to max_quant_intervals = 32768

Listing 3. Setup: waveSZ and GhostSZ
tar zvf ppopp20_artifacts.tgz -C /tmp/ppopp20_artifacts
cd /tmp/ppopp20_artifacts
make

A.3 Data Preparation
In our paper, CESM-ATM Dataset1 (1.47 GB), Hurricane ISABEL
Dataset (1.25 GB), and NYX Dataset (2.7 GB) are used. Both the
links and the commands work. These datasets are hosted on https:
//sdrbench.github.io

Listing 4. Data Preparation
mkdir /tmp/SDRBench
wget -P /tmp/SDRBench/ \
https://97235036-3749-11e7-bcdc-22000b9a448b.e.globus.org/

ds131.2/Data-Reduction-Repo/raw-data/CESM-ATM/
SDRBENCH-CESM-ATM-1800x3600.tar.gz

wget -P /tmp/SDRBench/ \
https://97235036-3749-11e7-bcdc-22000b9a448b.e.globus.org/

ds131.2/Data-Reduction-Repo/raw-data/Hurricane-ISABEL
/SDRBENCH-Hurricane-ISABEL-100x500x500.tar.gz

wget -P /tmp/SDRBench/ \
https://97235036-3749-11e7-bcdc-22000b9a448b.e.globus.org/

ds131.2/Data-Reduction-Repo/raw-data/EXASKY/NYX/
SDRBENCH-EXASKY-NYX-512x512x512.tar.gz

cd /tmp/SDRBench
for i in *.tar.gz; do tar zxf $i; done

Listing 5. SHASUM
(optional) SHASUM

SDRBENCH-CESM-ATM-1800x3600.tar.gz
0994a5bfc797f3faf3f092a807422accee24f91dfa073f528ab7b76114986af5
SDRBENCH-Hurricane-ISABEL-100x500x500.tar.gz
ca5f8003ab4a650ea2d546eeb7ad6efd55b6e14281b361b365add41d0e7fa5ac
SDRBENCH-EXASKY-NYX-512x512x512.tar.gz
9df0fb4450d45f3d9c7cd1b5b59e9a7c1ec6ea0ab736d3e5ae46b5c52118e058

A.4 Step-by-Step Instruction
A.4.1 Execution

Listing 6. Conducting SZ-1.4 Experiments
SZ=/tmp/sz1.4_install/bin/sz
DIR=/tmp/ppopp20_artifacts
BESTSPEED=/tmp/SZ-1.4.13.5/example/sz.bestSpeed

rm -f ${DIR}/SZ_{bestSpeed,bestCR}_{CESM,Isabel,NYX}.txt
touch ${DIR}/SZ_{bestSpeed,bestCR}_{CESM,Isabel,NYX}.txt
SZC="${SZ} -z -f -c ${BESTSPEED} -M REL -R 1E-3"
SZD="${SZ} -x -f -s"

cd /tmp/SDRBench/1800x3600
SIZE="-2 3600 1800"
for DATA in *.dat; do
LOG="${DIR}/SZ_CESM.txt"
echo ${DATA} >> ${LOG}
${SZC} -i ${DATA} ${SIZE} >> ${LOG}
${SZD} ${DATA}.sz -i ${DATA} ${SIZE} -a >> ${LOG}

done

cd /tmp/SDRBench/100x500x500
SIZE="-3 500 500 100"
for DATA in *.f32; do
LOG="${DIR}/SZ_Hurricane.txt"
echo ${DATA} >> ${LOG}
${SZC} -i ${DATA} ${SIZE} >> ${LOG}
${SZD} ${DATA}.sz -i ${DATA} ${SIZE} -a >> ${LOG}

done

cd /tmp/SDRBench/512x512x512
SIZE="-3 512 512 512"
for DATA in *.dat; do
LOG="${DIR}/SZ_NYX.txt"
echo ${DATA} >> ${LOG}
${SZC} -i ${DATA} ${SIZE} >> ${LOG}
${SZD} ${DATA}.sz -i ${DATA} ${SIZE} -a >> ${LOG}

done

Listing 7. Conducting waveSZ and GhostSZ Experiments
DIR=/tmp/ppopp20_artifacts
waveSZ=${DIR}/cpurun; GhostSZ=${DIR}/cpurun
rm -f ${DIR}/{waveSZ,GhostSZ}_{CESM,Hurricane,NYX}.txt
touch ${DIR}/{waveSZ,GhostSZ}_{CESM,Hurricane,NYX}.txt

cd /tmp/SDRBench/1800x3600
for DATA in *.dat; do
echo ${DATA} >> ${DIR}/{wave,Ghost}SZ_CESM.txt
$waveSZ 1800 3600 1 -3 base10 ${DATA} wave VRREL \
>> ${DIR}/waveSZ_CESM.txt

$GhostSZ 1800 3600 1 -3 base10 ${DATA} ghost VRREL \
>> ${DIR}/GhostSZ_CESM.txt

done

https://drive.google.com/file/d/1SsF9g5cUdoJbN2kGW80UItq4_qu2tRgz/view?usp=sharing
https://github.com/jtian0/20_PPoPP_artifacts
https://github.com/jtian0/20_PPoPP_artifacts
https://sdrbench.github.io
https://sdrbench.github.io


waveSZ PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

cd /tmp/SDRBench/100x500x500
for DATA in *.f32; do
echo ${DATA} >> ${DIR}/{wave,Ghost}SZ_Hurricane.txt
$waveSZ 100 250000 1 -3 base10 ${DATA} wave VRREL \
>> ${DIR}/waveSZ_Hurricane.txt

$GhostSZ 100 250000 1 -3 base10 ${DATA} ghost VRREL \
>> ${DIR}/GhostSZ_Hurricane.txt

done

cd /tmp/SDRBench/512x512x512
for DATA in *.dat; do
echo ${DATA} >> ${DIR}/{wave,Ghost}SZ_NYX.txt
$waveSZ 512 262144 1 -3 base10 ${DATA} wave VRREL \
>> ${DIR}/waveSZ_NYX.txt

$GhostSZ 512 262144 1 -3 base10 ${DATA} ghost VRREL \
>> ${DIR}/GhostSZ_NYX.txt

done

A.4.2 Gather Statistics
The compression ratio is obtained from calculations. And all the
datasets are interpreted as 2D datasets. For instance, a 100x500x500,
with the order of higher dimension to lower dimension (or outer
loop to inner loop in waveSZ implementation) is interpreted as
100×(250,000) 2D dataset. And all points at border can be left out
when calculating compression ration (further details found below).

We have two ways of using lossless compression to archive the
quantization
1) use gzip on the raw quantization code, which is exported as

{wave,ghost}.code
2) use customized Huffman encoding and then use gzip on the

Huffman-encoded quantization code, which is exported as
*.{wave,ghost}.huffman

for i in *.{code,huffman}; do
gzip -c --fast $i > $i.gz.fast
gzip -c --best $i > $i.gz.best

done

And the compression ratio is obtained by
original.size

lossy.compression.size
if we do not count the border points as unpredictable data (“ver-
batim” in the final archive), and this is annotated with “maximal
possible compression ratio”. Otherwise, with border points counted
as unpredictable data (“verbatim”), it is calculated from

original.size
(lossy.compression.size + #border.points) × sizeof(float32)

To get the useful information,

Listing 8. SZ-1.4: extracting compression ratio and PSNR
# source: /tmp/ppopp20_artifacts/SZ_{CESM,Hurricane,NYX}.txt
# compression ratio
cat SZ_{CESM,Hurricane,NYX}.txt \
| grep compressionRatio \
| awk -F'=' '{print $NF}'

# PSNR
cat SZ_CESM.txt | grep PSNR \
| awk -F',' '{print $1}' \
| awk -F' = ' '{print $NF}'

Listing 9. waveSZ and GhostSZ: extracting compression
ratio and PSNR
# source: /tmp/ppopp20_artifacts/{waveSZ,GhostSZ}_{CESM,

Hurricane,NYX}.txt
# get the lossless compressed archive size in filesystem
ls -al \
| grep {ghost,wave} \
| grep {huffman,code}.tgz \
| awk '{print $5}'

# get PSNR
cat {waveSZ,GhostSZ}_{CESM,Hurricane,NYX} \
| grep PSNR \
| awk '{print $NF}'

Please also refer to the organized statistics in
ppopp_artifacts.{xlsx,ods}, whichever as open format works.
A script for collecting results is posted on the GitHub repository.

https://github.com/jtian0/20_PPoPP_artifacts
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