Progress-based Container Scheduling for Short-lived
Applications in a Kubernetes Cluster

Yugi Fu*, Shaolun Zhang*, Jose Terrero*, Ying Mao*, Guangya Liuf, Sheng Li, Dingwen Tao®
*Computer and Information Science, Fordham University, * Email: {yfu81, szhang253, jterrerol, ymao41}@fordham.edu
fIBM China Systems Lab, t Email: liugya@cn.ibm.com
J:Department of Computer Science, University of Georgia, ! Email: sheng.li@uga.edu
§Department of Computer Science, University of Alabama, § Email: tao@cs.ua.edu

Abstract—In the past decade, we have envisioned enormous
growth in the data generated by different sources, ranging from
weather sensors and customer purchasing records to Internet
of Things devices. Emerging data-driven technologies have been
reforming our daily life for years, such as Amazon Personal-
ize [1], which creates real-time individualized recommendations
for customers according to multidimensional data analytics. It
is, however, a challenging task to fully utilize and harness the
potential of data, especially big data, due to Volume, Velocity,
Variety, Variability and Value (5Vs) [2]. Most businesses thus
choose to migrate their hardware demands to cloud providers,
such as Amazon Web Service [3], which is powered by hundreds
of thousands of servers. A cluster that builds up by a number
of cloud servers is a basic management unit to provide shared
computing resources. The typical structure of a cluster consists
of managers and workers. When a job arrives at the cluster,
as the first step, managers have to select a worker to host the
incoming job. Traditionally, the selection process is based on the
state of the workers, e.g., resource availability and specifications
of jobs, e.g., labels, zones and regions. With respect to currently
running jobs, we propose a progress based container placement
scheme, named ProCon. When scheduling incoming containers,
ProCon not only considers instant resource utilization on the
workers but also takes into account the estimation of future
resource usage. Through monitoring the progress of running
jobs, ProCon balances the resource contentions across the
cluster and reduces the completion time as well as the makespan.
Specifically, extensive experiments prove that ProCon reduces
completion time by up to 53.3% for a particular job and improves
overall performance by 23.0%. Additionally, ProCon records
an improvement of makespan for up to 37.4% when compared
to the default scheduler available in Kubernetes.

Index Terms—Big Data, Deep Learning, Container, Docker,
Kubernetes.

I. INTRODUCTION

Enormous growth in data from various domains, such as
commerce, education, military and government has dramati-
cally transformed the way businesses make decisions, causing
decision making processes to now be data-driven. As a tra-
ditional industry, agriculture [4] is one of the representative
fields that has been reformed by data powered technologies.
For example, Mothive [5], CropX [6] and Arable [7] are
companies that design and deploy sensors to produce precise
and radiometrically accurate plant-level vegetation indices
with the aims of achieving smart farming management. More-
over, a drone-based data-driven harvest solution is offered for

automated agronomy services to maximize efficiency, reduce
waste, and improve the predictability and control of crops.

According to a report from Economist [8], “data is to this
century what oil was to the last one: a driver of growth and
change.” However, it is very challenging to fully utilize and
harness the potential data has to offer, especially when dealing
with the characteristic 5Vs of big data [2], due to expensive
infrastructure support, non-trivial technical requirement and
high management cost. In smart farming industry, the above
mentioned producing and harvesting of data are the very
initial steps of the process. Considering the whole system, the
collected raw data requires to be properly structured, stored
and analyzed, which is challenging due to the aforementioned
expensive infrastructure support, comprehensive technical re-
quirements and high management cost. Consequently, cloud
computing that provides elastic, on-demand and all-in-one
services is naturally a top choice to take advantage of and
empower raw data. Equipped with hundreds of thousands of a
wide diversity of servers, Amazon Web Service [3], Microsoft
Azure [9] and Google Cloud Platform [10] are the dominant
players of the cloud service providers.

Through shared resources, e.g. CPU, memory, disk and
network, affordable services, like data storage, computation,
warehouse, and analytics, are offered to end customers. Con-
tainerization is a leading virtualization technology that enables
the resource sharing and, at meanwhile, maintains isolation
among users. With increasing workloads, cloud service
providers use a cluster as the basic management unit. A cluster
usually consists of a hierarchical structure of managers and
workers, where each manager and each worker is either a vir-
tualized container or a bare-metal server. Cluster management
toolkits, such as Docker Swarm [11] and Kubernetes [12], are
in duty for container orchestration.

Whenever a job arrives at the cluster, a manager needs to, as
the first reaction, select a worker to host it. Selecting the most
desirable worker in the cluster is a non-trivial task. Tradition-
ally, the selection process is based on the states of the workers,
e.g. resource availability and specifications from users, e.g.
labels, zones and regions. For example, spread strategy [13] in
Docker Swarm tries to distribute the containers evenly inside
the cluster and balanced-resource allocation [14] in Kubernetes
favors nodes with balanced resource usage rate. Moreover, in
a Kubernetes cluster, administrators can specify a multi-layer

placement scheme that combines different priorities to make
the worker selection process comprehensive.

The present commercial systems, however, fail to take exist-
ing jobs on the worker into account. Although the running jobs
could reflect indirectly by the resource usage on a particular
worker, the expected completion time, especially for short-
living computing jobs, should be taken into consideration.
Assuming there is a 3-node cluster that configures to 1
manager and 2 workers. And that currrently, 3 jobs are running
in this cluster, with 2 of them are being run on worker-1 and
the other one being hosted by worker-2. With spread strategy,
the incoming 4" job will be assigned to worker-2 to maintain
an even distribution. It works perfectly fine if the existing jobs
would elapse for a while after the assignment. But, if the 2 jobs
on worker-1 are expected to finish in a second, the previous
assignment would downgrade system performance.

In this work, we propose a PROgress-based CON-
tainer placement scheme, named ProCon. At runtime,
ProCon studies progress values, which is commonly avail-
able for batch processing (e.g. Hadoop 3.0 [15]) and machine
learning (e.g. Tensorflow [16]) applications, to estimate the
expected completion time. Combining resource usage with
expected completion time, ProCon selects a node to balance
the contention on the workers in the cluster.

The main contributions of this paper are summarized as
follows.

« We introduce the concept of contention rate, a mea-
surement of the magnitude of the degrees in resource
completion across the cluster.

e« We propose ProCon with a suite of algorithms that
monitor the progress of running containers and estimate
their expected completion time. Additionally, it utilizes
the collected data to calculate the expected contention
rate and assign the incoming containers to balance the
resource contention on the workers.

e« We implement ProCon on top of a dominant con-
tainer orchestration tool, Kubernetes, and evaluate it with
popular containerized deep learning application. Through
intensive experiments, ProCon achieves significant im-
provement on completion time for a particular job, of up
to 53.3%, an overall reduction of up to 23.0% and records
a decrease of makespan for up to 37.4%.

II. RELATED WORK

With prevalence of data-driven businesses, demands for
various services in the cloud, such as storage [17], com-
puting [18], analytics [19] and learning [20], have increased
dramatically in the past decade.

In this domain, virtualization is one of the fundamental
technologies that powers the backend side of cloud computing.
As an emerging virtualization solution, containerization [21] is
replacing the traditional virtual machine due to its platform in-
dependent, resource lightweight, and flexible deployment [22].
Container technology has been studied to improve the services
in the cloud from different perspectives [23]-[30].

Despite the benefits of deploying containers, researchers
in [23] show that the startup latency is considerably larger than
expected, this is due to a layered file system and distributed
image architecture, in which copying package data accounts
for most of container startup time. The authors present Slacker
to quickly provision container storage using backend clones
and minimize startup latency by lazily fetching container
data. Additionally, CoMICon [30] addresses the same problem
by sharing the image in a cooperative manner and further
reducing the provisioning time. Moreover, SCoPe [31] presents
a statistical model to manage the provisioning time for large
scale containers.

Focusing on wait time in a congested datacenter, Big-C [24]
is proposed to minimize the queuing delays of short jobs
while maximizing resource utilization. It includes immediate
and graceful preemptions, and shows their effectiveness and
tradeoffs with loosely-coupled MapReduce as well as iterative
workloads. While Big-C uses available runtime estimates to
perform task placements, Kairos [25] achieves low latency and
high resource utilization without task runtime estimation. It
introduces a distributed approximation of the Least Attained
Service scheduling policy. Tagrgeting on a specific type of
applications, Minos [26] further reduces the tail latency of in-
memory key-value stores. It implements size-aware sharding,
a new technique that assigns small and large requests to a
disjoint set of cores.

When deploying services in a production environment,
cloud service providers utilize a cluster of physical machines
to host them. The toolkits for container orchestration are,
usually, required for managing the containers in a cluster.
Docker Swarmkit [32] and Kubernetes [12] are dominant clus-
ter management tools in the market. As the first step in initial-
ization, authors of [33] propose Draps to place the containers
based on different patterns of their resource demands. While
Draps provides a general solution for container placement,
Stratus [34] and PIVOT [35] investigate new cluster schedulers
that are specialized for orchestrating big data applications on
virtual clusters. Besides, FlowCon [36] is proposed to optimize
the performance of containerized deep learning applications.

While existing researches optimize the system from various
points of views, few of them take the current running jobs
and their expected completion time into account. In this paper,
we propose a new scheduler, named ProCon, which places
container based not only on resource utilization at present
but also on the estimate of future resource usage in order to
minimize the contention rate in the cluster.

The remainder of this paper is organized as follows. In
Section III, we introduce the background with motivating
examples of this project. In Section IV and Section V, we
present the ProCon architecture and algorithms in details.
We carry out the extensive evaluation of ProCon in the cloud
(in Section VI) and conclude the paper in Section VII.

III. BACKGROUND AND MOTIVATION

In this section, we briefly introduce containerized applica-
tions and motivate our work with an example.

A. Container Orchestration

Containerization is a virtualization technique that enables
applications to encapsulate all necessary dependencies into
a sandbox in order to build a platform-independent runtime
environment. Nowadays, many public cloud providers offer
Containers as a Service (CaaS) to simplify deployment of
containerized applications in the cloud. Generally, there are
two types of containers in the cloud.

o Long-lived containers: They aim to provide targeted
services that would last for a long time, such as web,
logging and storage services.

« Short-lived containers: They mainly focus on computing-
oriented services, which will expire when finished. The
representative services are batch processing for Hadoop
Yarn, Spark and iterative processing for Tensorflow,
Pytroch (deep learning platforms).

From the cloud service provider’s perspective, running
containerized applications creates an abstraction layer that
handles cluster management. The typical structure of a cluster
of containers consists of manager and worker nodes. Worker
nodes are responsible for running containers with workloads
that are submitted by the users; on the other hand, manager
nodes accept specifications and are responsible for reconciling
desired states with actual cluster states. Docker [11] and
Kubernetes [12] are leading open-source container orchestra-
tion toolkits. A container can be initiated with specifications
from users, e.g. resource limits, zones, and labels, etc. In the
system, a scheduler that resides in the manager is responsible
for various scheduling decisions, which are made taking into
account user specified requirements, cluster configurations as
well as current states. Whenever there is an incoming request,
managers have to, first, select a worker to host the container.
The node selection is a two-step process.

1) The scheduler filters out workers that fail to meet
requirements, e.g. disktype: ssd in the YAML file
of a Kubernetes container indicates that the host must
have a solid state disk.

2) The scheduler ranks the remaining candidates based
on default or a user specified placement scheme. This
scheme usually combines multiple factors, such as node
state, resource availability and current workload to pri-
oritize workers.

B. Motivation of ProCon

ProCon investigates the second step of the container
placement process. In particular, ProCon focuses on the
short-lived containers, which provide popular services like
execution of data mining algorithms, batch processing for big
data and training neural network models.

While the approaches in literature take many factors into
account, they fail in properly addressing the characteristics
of short-lived containers that release used resources when
jobs terminate. Fig. 1 shows a simplified illustrative example.
Suppose there are 3 containers in the cluster, one on Worker-1
and two on Worker-2. The numbers under the boxes represent

Worker 1 Worker 2

Container 2 Container 3

Fig. 1: Tllustrative Example

the remaining time, in the format of hour, minute and second,
for each of them. Without the remaining time, the manager
should obviously place the incoming 4'" container to worker-
1 in order to balance the workload. However, if the scheduler
is well aware of the expected completion time for the running
containers, the incoming 4" one should be assigned to worker-
2 since running jobs on worker-2 will finish in 5 seconds.

The illustrative example is based on estimating the comple-
tion time of existing containers. The actual time cost depends
on mainly three factors.

« Job itself: The tasks that are executed inside a container
are determined by the users. The completion time varies
with algorithms, implementation and data sets, which are
out of the control of the computing system.

o Resource availability: The tasks utilize different re-
sources, such as CPU and network, to keep progressing.
Usually, the maximum resource usage allowed is a fixed
number based on the parameters specified by the users
and the configuration of the workers.

o Workload on workers: The containers on the same worker
compete for resources. The more resources available to
this container , the faster it moves.

Despite limited information about job itself, the progress
of short-lived containers can be estimated given the real-time
resource usage, which we can obtain as a system administrator.
Fig. 2 shows the time cost for 3 jobs, MapReduce based
wordcount (shown as Hadoop-Map and Hadoop-Reduce),
Spark based KMeans and Tensorflow based LeNet. For the
MapReduce job, we record the cost to increase one percentual
point of the total progress (excluding the shuffling phase) and
for Spark and Tensorflow jobs we record the cost associated
with each iteration. The figure illustrates that the cost is stable
and floats within a small cell. While the jobs are running
in alone without resource completion, a stable cost motivates
us to estimate the completion time with the help of resource
usage.

50 e=== Hadoop-Map
Hadoop-Reduce
= Spark-KMeans

40 e Tensorflow-LeNet
Gg ~
§ 20 N~ Py -
&
5]
£ 20
=

10

%o 02 0.4 0.6 08 10

Progress

Fig. 2: Progress of representative workloads

IV. SYSTEM DESIGN

ProCon builds on top of Kubernetes, which is a popular
container-orchestration system for automating application de-
ployment, scaling, and management. In this section, we present
the system design of ProCon in detail, including its design
logic and functionalities of key modules.

A. Framework of Kubernetes

A Kubernetes cluster consists of workers and managers. A
pod in Kubernetes is group of containers that are deployed
together on the same host. In the cluster, each pod consists of
one or more containers and each worker can host one or many
pods.

There are 6 basic components in Kubernetes. The man-
ager nodes consist of API Server, Controller Manager
and Scheduler and etcd. The Kuberlet and Service Proxy
resident in workers.

o API Server: It is the main management point of the entire
cluster and processes REST operations, validates them,
and updates the corresponding objects in storage.

o Controller Manager: It runs controllers, which are the
background threads that handle routine tasks.

o Scheduler: It watches for newly created Pods that have no
node assigned and is responsible for placement of pods
on workers.

o etcd: It is a distributed data storage solution that stores
all the data, e.g. configuration, state, and metadata.

o Kuberlet: It is responsible for maintaining a set of pods,
which are composed of one or more containers, on a local
system.

o Service Proxy: It maintains network rules on nodes, e.g.
implementing a form of virtual IP for services.

B. ProCon Modules

As demonstrated in Fig. 3, ProCon consists of three
modules, a ProCon Scheduler and a Log Analyst and on the
manager side, and a Container Monitor on the worker side.
Each module runs independently and exchanges information
about the jobs inside the containers as well as worker status.
Their functionality is shown in detail as below.

/ ProCon
$ HeartBeat

API B 1

Worker

Container 1

Manager

Container 1

Container 2

Container 2

. ProCon Scheduler ¥ Container 3

Kuberlet

Log Analyst AP
, server \ Container Monitor
/! 4
Controller Manager #¥ ‘ Service Proxy
8 « g (609

Fig. 3: ProCon System Architecture

1) Container Monitor: Runs on the worker nodes, the
container monitor keeps track of the status of running jobs.
For example, it maintains the number of completed iterations
of a Tensorflow training job along with its time cost for
each iteration. During the time period, the average resource

consumption of this container will also be recorded. These
records will be stores as log files in a persistent volume.

2) Log Analyst: The log analyst runs on the manager node,
who has a global view of all workers. It analyzes the log
files generated by the container monitors in workers. Based
on these log files, it calculates the required parameters for
the scheduling algorithm, such as contention rate (details in
section V), and communicates with the scheduler for the final
decision on the container placement.

3) ProCon Scheduler: ProCon scheduler is a key module
of the system. It gathers the information from the log an-
alyst and calculates a score for each of the worker nodes.
ProCon scheduler selects the worker to host an incoming
container according to the scores. Besides the ranking of
workers, it can apply additional priority algorithms or policies
to accommodate the system needs.

V. PROCON PROGRESS-BASED CONTAINER PLACEMENT

ProCon aims to improve the system performance by
placing pending containers to the most desirable worker in
the cluster. To achieve this goal, ProCon not only considers
the current states of the workers but also future states, related
with the expected completion time of running containers on
them. In this section, we present how ProCon estimates the
finish time for each container, calculates contention rate and
selects the workers.

A. Completion Time Estimation

As discussed in Section III, how fast the computing job pro-
gresses depends on the job itself, which includes algorithms,
implementation , datasets, etc. In addition, it also affects the
amount of resources allocated to it. While the system has no
clues regarding the first factor without scanning files inside
a container, it is a constant factor when this particular job is
running. For example, if users want to train a deep learning
model with recurrent neural networks, they have to, first,
design algorithms, implement them, and then specify datasets
for their neural networks, and finally, package everything
into a container and start the training process in the cloud.
Once the container is running, the job itself will not change
anymore. This constant factor can be indirectly reflected by
the progress rate. Given the same resource amount, a well-
designed algorithm should be less time-consuming and the
same algorithm with a smaller dataset should cost less time to
finish.

With the analysis above, finding the progress rate is crucial
for the estimation ofthe completion time. Since ProCon fo-
cuses on short-lived computing applications, such as batch
processing and deep learning, we define the progress rate as
the percentage of the maximum number of iterations allowed
that have already been computed. Or, the percentage of the
amount of the total data that is to be processed that has been
processed already. For example, if we need a maximum of 10K
iterations to train a deep learning model and currently iteration
number 1000 is being executed, the progress rate is 10%; if
a data processing job, e.g. Hadoop WordCount, is expected

to process SGB of data, and 2GBs of data have already been
processed, then the progress rate is 40%.

In ProCon, the applications report their progress rate
periodically, e.g. every time an iteration is completed, or every
time the total progress increases by at least one percentual
point, we consider multiple jobs running concurrently in a
cluster with multiple workers. We use J;4 to represent the job
ID and W; as the worker ID. Since the report of progress rate
is a per-job record, we utilize Equation 1 to calculate the time
cost for the latest progress report at given time .

f(Jid,ﬂ = P(Jid,n) - P(Jid,n - 1) (D)

, where P(J;q,n) is the timestamp when J;4 submits its nth
(latest) report and f(.J;4,t) represents the cost of the latest
two reports at time .

Besides the job itself, the expected completion time also
depends on the resources that is available to it. We can obtain
the resource usage for each container by using the various
tools. We define function R(J;4,t) , that returns the amount
of resources being occupied by .J;; at time {. Because the
resources are shared by all running jobs on the same worker,
we can calculate the relative resource usage though Equation 2

R(J;q,t)

2 7t =
U(Jd) E]idewi R(Jid;t)

2

Combining both equations, the remaining time indicator (i)
for J;q can be computed through Equation 3.

f(Jid7 t)

) = i)

X (MAX — P(Jid,n)) (3)

, where M AX is a constant value that represents the maximum
progress that the job can achieve, e.g. 100 percents or user-
defined maximum number of iterations.

TABLE I: Notation Table

Jig € J The job ID in the cluster
W, eWw The worker ID in the worker set
R(J;q,1) The resource usage for J;4 at time ¢
u(J;d,t) The relative resource utilization rate of J;4 at time ¢
L(W;) The resource limit on the worker
f(Jia,t) The time difference of the last two reports of J;4 at time ¢
P(Jiq,n) The nP progress rate report of J;4
i(Jid, t) The remaining time indicator for J;4 at time ¢
RC(W;,t) The number of running container on the W; at time ¢
erc(W;,t) | The expected number of running container on W; at time ¢
S The candidate set
MAX The maximum value of progress that defined by the user
c(W;) The contention rate of W;

In Table I, we summarize the parameters and functions that
are used for analysis and algorithms. Please note that function
and parameter names start with upper case letters are either
constant or can be obtained directly through existing tools or
APIs. The function and parameter names begin with lower
case letters can be calculated from others.

Algorithm 1 Contention Rate of W;

1: System Initialization: J;q, Wy, L(W;)
: Parameters: P(J;q,n), RC(W;,t), R(J;a,t), MAX

N

30 32w, R(Jia, t) < xL(W;) then
4. Wi.upper_limit = False

5: for J;qg € W; do ()
) — _ R(at)
U(szat) - ZJidEWi R(Jiq,t)
7 i(Jig,t) = fiart) o (MAX — P(J;q,n))
d

wy,;

8: for VJ;q € W, do
Find Max (i(J;q,t))

10: for t = Sys(t); t < Max(i(Jq,t)), t ++ do
11: for J,q € W; do

12: if i(J;q,t) > t then
13: erc(W_i,t).insert(J;q)
14: t = Sys(t)

15: while ¢ < Max(i(J;4,t)) do
16: c(W;) =c(W;) + 1 x (lere(W;, t)|—1)
17: t++

B. Calculate Contention on the Workers

Since the number of running containers on each worker
significantly influences the completion time of jobs, we denote
RC(W;,t) to be the function that returns the number of
existing containers, which is directly available to managers.
The larger the number of containers running concurrently, the
more intense the contention for resources. Given the function
RC(W;,t), the contention rate of T, can be represented by
Equation 4. To simplify the integral of Equation 4 in practice,
we convert it to a summation problem using one-second time
intervals.

RC(W;, t)dt “4)
t=0

c(w;) =

The system needs to calculate the contention rate based on
the existing containers and their expected completion time.
In ProCon, Algorithm 1 runs on each worker node. As
shown on Line 1 and 2, each worker maintains required
data such that J;q, W;, L(W;) are the information from the
cluster itself, RC'(W;,t), R(J;q,t) are available from APIs,
and P(J;q,n), MAX can be obtained from progress reports.

When the algorithm starts on W;, it first checks the overall
resource utilization. In a scenario that the utilization rate is
lower than resource limits, ProCon marks this worker’s
“upper_limit” flag to false, which will be used later in the
node selection process. When the flag is false, it means that
no matter how many jobs a running on it, they cannot fully
utilize the resources (Line 3 - 4).

Next, for each J;; on W;, Algorithm 1 calculates the relative
resource utilization rate, u(J;q4,t). Based on u(J;q4,t), it, then,

computes the remaining time indicator, i(.J;q4, t) for J;4 at time
t (Line 5 - 7). At this stage, every J;4 that runs on W; has
an indicator that suggests the expected completion time. The
algorithm finds the largest i(J;4,t) value, which reflects the
time point when all the current running containers will be
released due to the completion of the jobs (Line 8 - 9).

The function, RC(W;,t), returns the number of running
containers at time ¢ and can be directly obtained from APIs.
The APIs, however, cannot provide any information beyond
the current time. Therefore, starting from the current system
time to Maxi(J;4, t), the algorithm calculates the expected run-
ning containers and formulates it into a function, erc(W;,t),
which returns an expected value of RC'(W;,t) (Lin 10 - 13).

Finally, Algorithm 1 resets time ¢ to the current system time
(Line 14) and calculates the contention rate for WW; based on
the erc(W;,t) (Line 16 - 17). Different from the value of the
remaining time, i(J;q,t) is an indicator of it. Thus, different
from Equation 4, the algorithm uses 1 for precision.

C. ProCon Container Placement

The Container Monitor on each worker runs Algorithm 1 to
calculate the contention rate. It writes the results to a log file
that is stored in a persistent volume, which can be accessed
from the manager side. The Log Analyst, which resides on the
manager, reads the files in the persistent volume and prepares
the necessary per-job parameters for Algorithm 2.

Whenever an incoming job arrives at the cluster, it triggers
the manager to start ProCon Scheduler, who is going to
execute Algorithm 2. ProConScheduler first initializes the
system, e.g. worker set W, job set J and candidate set S, as
well as the required parameters that prepared by Log Analyst
(Line 1 - 2).

After initialization, it enumerates the all the workers to find
out the one with a false “upper_limit” flag. These workers
will be added to the candidate set S (Line 3 - 5). For these
workers, no matter how large their contention rates are, they
will be considered as a host for the incoming job. The logic
behind it is that due to design and implementation, some jobs
cannot consume all the resources on workers. This feature fails
to reflect by the relative resource utilization rate, r(J;q,t). In
this case, excluding a worker solely based contention rate will
result in imbalanced workload. If S is not empty, Algorithm 2
ranks the candidates with their ¢(7¥;) and returns the one with
minimum value of contention rate (Line 6 - 9).

If S is empty, all the workers will be considered as the
candidates. For each J;4 on W;, ProCon calculates f(J;q,t)
based on progress reports (Line 10 - 14). Additionally, it
calculates u(J;4,t) under the hypothesis that the incoming job
has been added to W; and presumes the resource will be evenly
distributed with portion of m afterwards (Line 15).

Based on new values of f(J;q,t) and u(J;q,t), Algorithm 2
updates the remaining time indicator, i(J;4), t, expected run-
ning containers, erc(.J;q,t) and contention rate, ¢(W;), where
the new value suggests the degree of resource contentions if
the system place the incoming job on a particular worker W;
(Line 16 - 19).

Algorithm 2 Container Placement on the Manager

1: System: W, J,S = {}
2: Parameters: P(J;q,n), RC(W;,t), R(J;q,t), MAX

3: for W, € W do

4: if W;.upper_limit = False then
5: S.inset(W;)

6: if |.S|> 0 then

7. for W; € S do

8: Find Min(c(W;))

9: Return W; with minimum c¢(W;)
10: else

11: for W; € W do

12: S.inset(W;)

13: for J;q € W; do

14: f(JZ'd7t) = P(sz,n) — P(Jidﬂl —].)
15: u(Jiast) = momwiaoT

16: Re-calculate i(J;q, tS

17: t = Max(i(J;q,t))

18: Re-calculate erc(W _i, t)

19: Re-calculate ¢(W;)

20: Find Min(c(W;))

21: Return W; with minimum ¢(W;)

Finally, ProCon finds the W; with the minimum value of
¢(W;) and select it as the host of the new container.

VI. EVALUATION

In this section, we evaluate the performance of
ProCon through intensive cloud-executed experiments.

A. Experimental Framework

We integrate ProCon into Kubernetes 1.15 and implement
it as plug-in modules that reside on both manager and worker
nodes. It receives tasks from the manager, and then directs
the given tasks to a selected worker for execution. We build
the testbed on NSF Cloudlab [37], which is hosted at the
University of Utah, Downtown Data Center. Specifically, we
use multiple M510 as our physical machines that contain two
8-core Intel Xeon D-1548 at 2.0 GHz, 64GB ECC Memory,
and 256 GB NVMe flash storage. To evaluate the system, we
build two clusters,

¢ Cluster 1: 1 Manager and 4 Workers.

o Cluster 2: 1 Manager and 7 Workers.

ProCon focuses on the short-lived containers. As a repre-
sentative and extremely-popular type of computing workload,
we evaluate ProCon with various deep learning applications
through two widely-used platforms, Tensorflow [16] and Py-
torch [38]. Table II lists the workloads used in the experiments.

B. Experiment Setup and Evaluation Metrics

In ProCon, Algorithm 1 runs on each worker to prepare the
necessary information required by Algorithm 2. The objective

TABLE II: Tested Deep Learning Models

Model MAX | Plat.

Variational Autoencoders (VAE) [39] 15 P/T
Modified-NIST (MNIST)-CNN [40] 200 P/T
Deep Regression Neural Network [41] | 5000 P
Bidirectional-RNN [42] 10000 T
LeNet-CNN [43] 5 T

of ProCon is to place the container in the most appropriate
worker node in order to reduce the overall completion time
for jobs in this cluster. Since deep learning applications are
computation-intensive , they are more sensitive to CPU than
memory spaces and network bandwidth. The following three
metrics are considered in our experiments.

o Completion Time: the completion time of each individual
job in the cluster.

e Overall System Performance: the total length of the
schedule for all the jobs in the system (makespan) and
the average completion time.

o Contention Rate: the contention rate on each worker,
which has a significantly impact on the other two factors.

To ensure a comprehensive evaluation, we design the fol-
lowing submission schedules, Fixed Schedule: the time to
launch a job follows a fixed interval. It simulates an adminis-
trator controlled cloud environment. Random Schedule: the
time to launch a job is randomly selected within an interval.
It simulates an user-specified cloud environment.

In addition, we compare ProCon with the default sched-
uler in Kubernetes. In the rest of the evaluation part, we denote
DS to be the default scheduler.

C. Fixed schedule with one job type

We fix the schedule with an interval of 30 seconds such that
the jobs are submitted at time 0, 30, 60, ..., etc. Additionally,
the type of jobs is fixed in this experiment. We submit 20 jobs
of Bidirectional-RNN on Tensorflow to the cluster to evaluate
ProCon on Cluster 1.

= Ds
4o ™= Procon
100-
o- ‘ ‘
2 3 4 s e i & & 1w m

Fig. 4: Fixed schedule with 20 Bidirectional-RNN jobs

Completion Time and Makespan: Fig.4 presents the com-
pletion time of jobs in this experiment. Since there is only one
type of jobs in the cluster, as we can see that the values for
each of them is stable. There are 13 out of 20 jobs record a
reduction on the completion time. The average improvement
of the 13 jobs is 7.4% (448.7s v.s. 484.6s). The 7 jobs, which
have a longer execution time, get a 2.2% increase (451.9s v.s
441.7s). As for makespan, which reflects the overall system
performance, while reducing the average completion time,

ProCon remains stable when comparing with DS (1005.6s
v.s. 1017.1s).

Job Id
Job Id

197 W1

-

L ———2

5 ——w3
w-a

o 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

Fig. 6: DS with fixed sched-
ule and 20 jobs

Fig. 5: ProCon with fixed
schedule and 20 jobs

Contention Rate: Fig. 5 and Fig. 6 illustrate details of the
container placement for ProCon and the D.S. First of all, we
find that the distribution with DS is imbalance since there are
6 jobs on Worker-1 and 4 jobs on Worker-2. This is because
DS in Kubernetes prioritizes the worker based on instant
resource usage when the incoming job arrives. However, there
is a delay when fetching the resource usage due to the latency
when executing jobs. Considering the fixed schedule and one
job type, ProCon acts like a round-bin algorithm such that
each worker is assigned 1 job and then rotate. When the the
5¢p job arrives at the cluster, each of the workers has one
running container and, of course, the worker, who hosts the
first job, is expected to finish sooner than other. Therefore,
ProCon assigns Job-5 to Worker-4.

When calculating the contention rate, ProCon outperforms
DS on Worker-1 (1323 v.s. 1898), Worker-3 (1325 v.s. 1370)
and Worker-4 (1275 v.s. 1331), but fails on Worker-2 (1327
v.s. 970), which has less number of jobs on it. Please note that
ProCon aims on balancing the resource contention across
nodes and it does not focus on minimizing the value on a
particular worker. The standard deviation values are 25 and
382, which suggests ProCon is more stable across different
workers.

Remarks: ProCon’s achievement is limited (overall 7.4%)
under a fix submission pattern. The reason lies in the fact
that, with a fixed interval of 30s and fixed job type to
Bidirectional-RNN on Tensorflow, both resource usages and
demands are very stable in the system, which reduce rooms
for optimization.

D. Random schedule with multiple types of jobs

In this experiment, we use the same testbed (Cluster 1), but
randomly generate a submission schedule within the interval
0 to 600s for 20 jobs, which randomly selected from Table II.

Completion Time and Makespan: Fig. 7 shows a different
trend such that the completion time varies due to different job
types as well as random submissions. With this schedule, 14
out of 20 jobs get improved on completion time. There is
a 26.1% average reduction among those jobs and the largest
gain is found on Job-18, which reduces 53.3% from 406.1s to
189.8s. To achieve the significant improvement, however, we
found that the completion time of Job-9 increases significantly

1400- == DS
ProCon
1200-

Time(second)

N A O
S o & o°
S & & o

7 8

1000~
-
9 10 11 12 13 14 15 16 17 18 19 20

I | | .
01 2 3 4
Job ID

Fig. 7: Random schedule [0, 600s] with 20 random jobs

from 195.4s to 640.0s. This is because Job-9 is running on
Worker-4 with DS and it is the only job on Worker-4 for
the majority of its execution time. Besides, there are 5 other
jobs record an increase on completion time, Job-2, Job-9,
Job-13, Job-16, Job-18. The loss in these jobs is due to the
imbalance workload distribution on DS, where some workers,
at certain point, has much less jobs than others. The container
assignment on DS benefits Job-2 significantly, and limited
number of other jobs, however, it sacrifices many others.
In contrast, Job-2 is hosted by Worker-2 in ProCon and
during most of its lifetime, there are two other jobs running
concurrently(demonstrated on Fig. 8 and Fig. 9).

Overall, ProCon achieves 23.0% reduction on the av-
erage completion time among all 20 jobs. Furthermore,
ProCon records a 15.3% decrease on the makespan of this
schedule, from 1611.2s to 1364.8s.

e
o i
2z :

Job Id
Job Id

0 200 400 600 800 1000 1200 0 25 s0 750 1000 1250 1500

Time Time

Fig. 9: DS with random
schedule and 20 jobs

Fig. 8: ProCon with random
schedule and 20 jobs

Contention Rate: The improvement of ProCon is ob-
tained through efficient container placement. Fig. 8 and Fig. 9
present the detailed container placement of ProCon and DS,
respectively. Comparing the figures, DS clearly leads to an
imbalanced placement. For example, Worker-2 is idle until
time 359s, when Job-13 submits to the cluster. In ProCon,
the containers are distributed more appropriately. With the
expected completion time in mind, the second container that
hosts by Worker-1, Worker-3 and Worker-4 is started at time
167s, 248s, 274s, and the first one on the respective worker
finishes at time 169s, 290s, and 353s. As we can see from
the Fig. 8, the overlaps of first and second jobs on Worker-1,
3 and 4 are small, which result in less resource contention
during the period. On Worker-2, however, the overlap of the
first two jobs is longer than others. This is due to the fact that
before the first one completes, a third job is assigned to this
worker that increased the level of contention and the execution

time for all of them becomes longer.

The contention rate of 4 worker nodes for ProCon and
DS are 1239, 6323 (Worker-1), 997, 91 (Worker-2), 1791, 250
(Worker-3) and 2112, 2344 (Worker-4). The standard deviation
of contention rates are 508 and 2901 for ProCon and DS. The
lower value indicates that ProCon can balance the resource
contentions.

E. Scalability of ProCon

Next, we evaluate our ProCon with an increased number
of jobs and a more workers in the cluster.

1) Lager workload: We conduct the experiments on Clus-
ter 1, which is the same one as we used in the previous
experiments. We submit 30 and 40 randomly selected jobs
within the interval [0, 600] in these experiments.

== DS
2500- ProCon

456789 18

19 20 21 22 3 24 25 26 27 za 29 30
Job ID

Time(second)
[N

v 5 & 8
g 8 & 8
g8 8 8 s

12

1 3

Fig. 10: Random schedule [0, 600s] and 30 random jobs

Completion Time and Makespan: Fig. 10 and Fig. 11
present the results from the experiments. As before, similar
trends can be found on the figures such that ProCon out-
performs DS generally. With 30 jobs running in the cluster,
ProCon improves 18 of them, with an average reduction
of 34.8% and 11.3% overall improvement among all 30
jobs. Moreover, ProCon lowers completion time for 26
jobs when 40 of them are submitted in the system. The
average improvement of those 26 jobs is 22.4% and overall
reduction is 10.2%. As we can see from the results, the
improvement of overall average completion time decreases
when the cluster has, not only a large amount of jobs, but
also a significantly denser schedule. If the interval of two
consecutive jobs is too small, it is difficult for ProCon to
obtain necessary information and select the most desirable
node. When considering the makespan of the system, however,
ProCon still wins over DS by a large margin, 36.6%
(1793.3s v.s. 2828.1s) and 28.2% (1908.2s v.s. 2656.2s) for
30-job and 40-job experiment, respectively.

== DS
2500- ProCon

2000~
1500-
1000- ‘ ‘
‘ I | | I, I | ‘ ¥ | ‘ ¥ | I ¥ | | |
S3ise7ss s 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Job ID

Tlme(second)

1 i 1 n 13141 30 31 32 33 34 35 36 37 38 39 40

Fig. 11: Random schedule [0, 600s] and 40 random jobs

Contention Rate: The contention rate for each worker in
30-job experiment is 4188 v.s. 4226, 3527 v.s. 10275, 4220

o
I
o

°
®

o
£y

°
T

CPU Usage
o
EY

CPU Usage
o
=

o
=

°
o

o
o

°
°

0.0
200 400 600 800 1000 1200 1400 1600 1800 400 600 800 1000 1200 1400 1600

Time

(a) Worker-1

(b) Worker-2

CPU Usage
CPU Usage

0
200 400 600 800 1000 1200 1400 1600
Time

(c) Worker-3

400 600 800 1000 1200 1400 1600
Time

(d) Worker-4

Fig. 12: CPU usage for 30-job experiment with ProCon

0.8-

o
£y

CPU Usage
°
=
opNpNmuwzy
CPU Usage

o
o

0.0 2
1200 1600 2000 2400 2800

Time

800
Time

(a) Worker-1 (b) Worker-2

- 10
- 27
-4

CPU Usage
CPU Usage

800
Time

(d) Worker-4

Time

(c) Worker-3

Fig. 13: CPU usage for 30-job experiment with D.S

v.s. 2525, 4765 v.s. 2378 for ProConand DS. Obviously,
ProCon is more stable on contention rate, where standard
deviations of them are 518.1 (ProCon) and 3635.8 (DJS).
As for 40-job experiment, the values are 1175 and 3713
for ProCon and DS respectively. ProCon is stable on
balancing the resource contentions on workers.

Fig. 12 and Fig. 13 shows the CPU usage on each worker
for ProCon and DS. Comparing them, Fig. 12 clearly tells
that workloads are more evenly distributed in ProCon as
the resource usage of CPU is in a similar level among all 4
workers. With D.S, however, Worker-3 and 4 have lower load
than Worker-1 and 2.

2) Lager cluster: Lastly, we increase the number of work-
ers in the cluster. In the experiments, we use Cluster 2,
which contains 1 Manger and 7 Workers. We conducted two
experiments, one with 30 jobs that submitted to the cluster
from O to 900s, the other one has 60 jobs with a submission
interval of [0, 1200s].

1750~
1500~
250-

[
o
o
IS}

Time(second)

N
o &8 8
Ny
we
B —
C——
O -
~ —
00 -
© —

Fig. 14: Random schedule [0, 900s] with 30 random jobs

Completion Time and Makespan: The results for comple-
tion time are illustrated on Fig. 14 and Fig. 15. For the two
experiments, there are 19 out of 30, and 36 out of 60 jobs that

perceive improvement in ProCon with a degree of 31.5% and
35.9% reduction. Overall, completion time reduces 14.7% and
12.9% in the experiments respectively.

Besides, ProCon boosts the system by reducing the
makespan. With the two experiments, values of makespan
decrease 21.7% (1273.3s v.s. 1626.1s) and 37.4% (2811.0s
v.s. 4493.5s) for ProCon and DS, respectively.

Contention Rate: ProCon achieves the improvement
through efficiently routing the containers to the most desirable
host, which balances the resource contention. Under a larger
cluster with more workers, ProCon maintains a stable
performance on the contention rate. For 30-job experiment, the
standard deviation of contention rate is 588 for ProCon and
2045 for DS respectively. When the number of jobs increases,
it is more difficult for the scheduler to allocate the jobs.
With 40-job experiment, the values of standard deviation are
1792 and 6456 for ProCon and DS respectively. Clearly,
ProCon enables a more stable container distribution for the
cluster.

VII. CONCLUSION

This paper studies a progress based container placement
scheme. In this paper, we propose ProCon, which not only
considers instant resource utilization on the workers but also
takes into account the estimation of future resource usage. We
implemented ProCon on Kubernetes and conducted exten-
sive experiments with deep learning applications. Comparing
with default scheduler, ProCon achieves a significantly, up
to 53.3%, reduction of completion time for a particular job
and up to 23.0% across all. Additionally ProCon records an
improvement of makespan for up to 37.4%.

4000 -

B DS
m ProCon

3000 -

Time(second)

[1]
[2]

[3]
[4]

[51
[6]
[7]
[8]

[9]
(10]
(1]
[12]
[13]

[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]
[22]

(23]

[24]

[25]

2000 -

Job ID

1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Fig. 15: Random schedule [0, 1200s] with 60 random jobs

REFERENCES

Amazon personalize. https://aws.amazon.com/personalize/.

Ibm: 5vs of big data. https://www.ibm.com/blogs/watson-health/
the-5-vs-of-big-data/.

Amazon web services. https://aws.amazon.com/.

Sjaak Wolfert, Lan Ge, Cor Verdouw, and Marc-Jeroen Bogaardt. Big
data in smart farming—a review. Agricultural Systems, 153:69-80, 2017.
Mothive. https://www.mothive.com/.

Cropx. https://www.cropx.com/.

Arable. http://www.arable.com/.

Economist report. https://www.economist.com/briefing/2017/05/06/
data-is- giving-rise-to-a-new-economy.

Microsoft azure. https://azure.microsoft.com/en-us/.

Goole cloud platform. https://cloud.google.com/.

Docker. https://docker.com/.

Kubernetes. https://kubernetes.io/.

Docker spread placement. https://docs.docker.com/engine/reference/
commandline/service_create/.

Balanced resource allocation. https://github.com/kubernetes/kubernetes/
blob/master/pkg/scheduler/algorithm/priorities/balanced_resource_
allocation.go.

Apache hadoop. https://hadoop.apache.org/docs/r3.0.0/.

Tensorflow. https://www.tensorflow.org/.

Cloud storage with aws. https://aws.amazon.com/products/storage/.
Amazon elastic compute cloud. https://aws.amazon.com/ec2/.

Azure data lake analytics. https://azure.microsoft.com/en-us/services/
data-lake-analytics/.

Azure machine learning service.
services/machine-learning-service/.
Containerization. https://cloud.google.com/containers/.

Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and YC Tay.
Containers and virtual machines at scale: A comparative study. In
Proceedings of the 17th International Middleware Conference, page 1.
ACM, 2016.

Tyler Harter, Brandon Salmon, Rose Liu, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. Slacker: Fast distribution with lazy
docker containers. In /4th {USENIX} Conference on File and Storage
Technologies ({FAST} 16), pages 181-195, 2016.

Wei Chen, Jia Rao, and Xiaobo Zhou. Preemptive, low latency
datacenter scheduling via lightweight virtualization. In 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17), pages 251-263,
2017.

Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel.
Kairos: Preemptive data center scheduling without runtime estimates. In
Proceedings of the 9th ACM Symposium on Cloud Computing, number
CONEF, 2018.

https://azure.microsoft.com/en-us/

[26]

[27]

[28]

[29]

[30]

(31]

[32]
[33]

[34]

[35]

[36]

(37]
[38]
[39]
[40]
[41]

[42]

[43]

Diego Didona and Willy Zwaenepoel. Size-aware sharding for improv-
ing tail latencies in in-memory key-value stores. In NSDI, pages 79-94,
2019.

Prajakta Kalmegh and Shivnath Babu. Mifo: A query-semantic aware
resource allocation policy. In Proceedings of the 2019 International
Conference on Management of Data, pages 1678-1695. ACM, 2019.
Wei Zhou, K Preston White, and Hongfeng Yu. Improving short job
latency performance in hybrid job schedulers with dice. In Proceedings
of the 48th International Conference on Parallel Processing, page 56.
ACM, 2019.

Diego Didona, Panagiota Fatourou, Rachid Guerraoui, Jingjing Wang,
and Willy Zwaenepoel. Distributed transactional systems cannot be
fast. In The 31st ACM on Symposium on Parallelism in Algorithms
and Architectures, pages 369-380. ACM, 2019.

Senthil Nathan, Rahul Ghosh, Tridib Mukherjee, and Krishnaprasad
Narayanan. Comicon: A co-operative management system for docker
container images. In 2017 IEEE International Conference on Cloud
Engineering (IC2E), pages 116-126. IEEE, 2017.

Aditya Hegde, Rahul Ghosh, Tridib Mukherjee, and Varun Sharma.
Scope: A decision system for large scale container provisioning manage-
ment. In 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD), pages 220-227. 1IEEE, 2016.

Docker swarm mode. https://docs.docker.com/engine/swarm/.

Ying Mao, Jenna Oak, Anthony Pompili, Daniel Beer, Tao Han, and
Peizhao Hu. Draps: Dynamic and resource-aware placement scheme
for docker containers in a heterogeneous cluster. In 2017 IEEE 36th
International Performance Computing and Communications Conference
(IPCCC), pages 1-8. IEEE, 2017.

Andrew Chung, Jun Woo Park, and Gregory R Ganger. Stratus: cost-
aware container scheduling in the public cloud. In Proceedings of the
ACM Symposium on Cloud Computing, pages 121-134. ACM, 2018.
Fan Jiang, Kyle Ferriter, and Claris Castillo. Pivot: Cost-aware schedul-
ing of data-intensive applications in a cloud-agnostic system.

Wenjia Zheng, Michael Tynes, Henry Gorelick, Ying Mao, Long Cheng,
and Yantian Hou. Flowcon: Elastic flow configuration for containerized
deep learning applications. In Proceedings of the 48th International
Conference on Parallel Processing, ICPP 2019, pages 87:1-87:10, New
York, NY, USA, 2019. ACM.

Nsf cloudlab. https://www.cloudlab.us/.

Pytorch. https://pytorch.org/.

Vae. https://jaan.io/what-is-variational-autoencoder-vae-tutorial/.

Mnist. http://yann.lecun.com/exdb/mnist/.

Shuai Zheng and etc. Conditional random fields as recurrent neural
networks. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1529-1537, 2015.

Mathias Berglund and etc. Bidirectional recurrent neural networks
as generative models. In Advances in Neural Information Processing
Systems, pages 856-864, 2015.

Lenet-cnn. http://slazebni.cs.illinois.edu/spring17/lecO1 cnn architectures.pdf.

